1
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2024; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ma S, Bi Q, Liu L, Thapa R, Li W, Liu B, Xu C, Sun C. Special Issue: "Vaccination and Global Health". Vaccines (Basel) 2024; 12:1223. [PMID: 39591126 PMCID: PMC11598834 DOI: 10.3390/vaccines12111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
This Special Issue, titled 'Vaccination and Global Health,' compiles 11 broad-ranging papers, each exploring critical facets of vaccination, public health, and global healthcare systems [...].
Collapse
Affiliation(s)
- Shaodi Ma
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China;
| | - Qian Bi
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Li Liu
- The Second People’s Hospital of Hefei, Guangde Road, Hefei 230011, China;
- Hefei Hospital Affiliated to Anhui Medical University, Guangde Road, Hefei 230011, China
| | - Roshan Thapa
- General Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China;
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Chuanhui Xu
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 545000, Singapore
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei 230601, China
- International Medical Department, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei 230601, China
| |
Collapse
|
3
|
Espinosa O, Mora L, Sanabria C, Ramos A, Rincón D, Bejarano V, Rodríguez J, Barrera N, Álvarez-Moreno C, Cortés J, Saavedra C, Robayo A, Franco OH. Predictive models for health outcomes due to SARS-CoV-2, including the effect of vaccination: a systematic review. Syst Rev 2024; 13:30. [PMID: 38229123 PMCID: PMC10790449 DOI: 10.1186/s13643-023-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The interaction between modelers and policymakers is becoming more common due to the increase in computing speed seen in recent decades. The recent pandemic caused by the SARS-CoV-2 virus was no exception. Thus, this study aims to identify and assess epidemiological mathematical models of SARS-CoV-2 applied to real-world data, including immunization for coronavirus 2019 (COVID-19). METHODOLOGY PubMed, JSTOR, medRxiv, LILACS, EconLit, and other databases were searched for studies employing epidemiological mathematical models of SARS-CoV-2 applied to real-world data. We summarized the information qualitatively, and each article included was assessed for bias risk using the Joanna Briggs Institute (JBI) and PROBAST checklist tool. The PROSPERO registration number is CRD42022344542. FINDINGS In total, 5646 articles were retrieved, of which 411 were included. Most of the information was published in 2021. The countries with the highest number of studies were the United States, Canada, China, and the United Kingdom; no studies were found in low-income countries. The SEIR model (susceptible, exposed, infectious, and recovered) was the most frequently used approach, followed by agent-based modeling. Moreover, the most commonly used software were R, Matlab, and Python, with the most recurring health outcomes being death and recovery. According to the JBI assessment, 61.4% of articles were considered to have a low risk of bias. INTERPRETATION The utilization of mathematical models increased following the onset of the SARS-CoV-2 pandemic. Stakeholders have begun to incorporate these analytical tools more extensively into public policy, enabling the construction of various scenarios for public health. This contribution adds value to informed decision-making. Therefore, understanding their advancements, strengths, and limitations is essential.
Collapse
Affiliation(s)
- Oscar Espinosa
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Laura Mora
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Cristian Sanabria
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Antonio Ramos
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Duván Rincón
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Valeria Bejarano
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jhonathan Rodríguez
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Nicolás Barrera
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | | | - Jorge Cortés
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Carlos Saavedra
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Adriana Robayo
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Oscar H Franco
- University Medical Center Utrecht, Utrecht University & Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA
| |
Collapse
|
4
|
Chiem K, Nogales A, Almazán F, Ye C, Martínez-Sobrido L. Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2. Methods Mol Biol 2024; 2733:133-153. [PMID: 38064031 DOI: 10.1007/978-1-0716-3533-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new member of the Coronaviridae family responsible for the coronavirus disease 19 (COVID-19) pandemic. To date, SARS-CoV-2 has been accountable for over 624 million infection cases and more than 6.5 million human deaths. The development and implementation of SARS-CoV-2 reverse genetics approaches have allowed researchers to genetically engineer infectious recombinant (r)SARS-CoV-2 to answer important questions in the biology of SARS-CoV-2 infection. Reverse genetics techniques have also facilitated the generation of rSARS-CoV-2 expressing reporter genes to expedite the identification of compounds with antiviral activity in vivo and in vitro. Likewise, reverse genetics has been used to generate attenuated forms of the virus for their potential implementation as live-attenuated vaccines (LAV) for the prevention of SARS-CoV-2 infection. Here we describe the experimental procedures for the generation of rSARS-CoV-2 using a well-established and robust bacterial artificial chromosome (BAC)-based reverse genetics system. The protocol allows to produce wild-type and mutant rSARS-CoV-2 that can be used to understand the contribution of viral proteins and/or amino acid residues in viral replication and transcription, pathogenesis and transmission, and interaction with cellular host factors.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | | |
Collapse
|
5
|
Heo CK, Lim WH, Yang J, Son S, Kim SJ, Kim DJ, Poo H, Cho EW. Novel S2 subunit-specific antibody with broad neutralizing activity against SARS-CoV-2 variants of concern. Front Immunol 2023; 14:1307693. [PMID: 38143750 PMCID: PMC10749193 DOI: 10.3389/fimmu.2023.1307693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), had a major impact on both the global health and economy. Numerous virus-neutralizing antibodies were developed against the S1 subunit of SARS-CoV-2 spike (S) protein to block viral binding to host cells and were authorized for control of the COVID-19 pandemic. However, frequent mutations in the S1 subunit of SARS-CoV-2 enabled the emergence of immune evasive variants. To address these challenges, broadly neutralizing antibodies targeting the relatively conserved S2 subunit and its epitopes have been investigated as antibody therapeutics and universal vaccines. Methods We initiated this study by immunizing BALB/c mice with β-propiolactone-inactivated SARS-CoV-2 (IAV) to generate B-cell hybridomas. These hybridomas were subsequently screened using HEK293T cells expressing the S2-ECD domain. Hybridomas that produced anti-S2 antibodies were selected, and we conducted a comprehensive evaluation of the potential of these anti-S2 antibodies as antiviral agents and versatile tools for research and diagnostics. Results In this study, we present a novel S2-specific antibody, 4A5, isolated from BALB/c mice immunized with inactivated SARS-CoV-2. 4A5 exhibited specific affinity to SARS-CoV-2 S2 subunits compared with those of other β-CoVs. 4A5 bound to epitope segment F1109-V1133 between the heptad-repeat1 (HR1) and the stem-helix (SH) region. The 4A5 epitope is highly conserved in SARS-CoV-2 variants, with a significant conformational feature in both pre- and postfusion S proteins. Notably, 4A5 exhibited broad neutralizing activity against variants and triggered Fc-enhanced antibody-dependent cellular phagocytosis. Discussion These findings offer a promising avenue for novel antibody therapeutics and insights for next-generation vaccine design. The identification of 4A5, with its unique binding properties and broad neutralizing capacity, offers a potential solution to the challenge posed by SARS-CoV-2 variants and highlights the importance of targeting the conserved S2 subunit in combating the COVID-19.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sumin Son
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Cheng WJ, Cai ZX, Tang XJ. Adverse reactions to cosmetic implants after COVID-19 vaccination: A literature review. J Cosmet Dermatol 2023; 22:3199-3212. [PMID: 37592436 DOI: 10.1111/jocd.15828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/08/2023] [Accepted: 05/09/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND As the world's population of people vaccinated with the COVID-19 vaccine increases, adverse reactions are increasingly being reported. There have been progressive reports of the effects of COVID-19 vaccination on cosmetic fillers or prostheses, but they have not been reviewed based on their clinical morphologic patterns. This article reviewed the progress of research on adverse reactions to cosmetic implants after COVID-19 vaccination. METHODS We researched the English-language literature up to October 15, 2022, using predefined keywords to identify relevant studies about adverse reactions to cosmetic implants after the COVID-19 vaccination, collecting patient characteristics, implant type, the time interval between vaccination and implantation or injection, time of onset, symptoms, treatments, and outcomes. RESULTS Among the adverse reactions to implants associated with COVID-19 vaccination, we distinguished between (1) injectable fillers and (2) surgical prosthetic implants. The most common adverse reactions were at the site of hyaluronic acid injection and breast prosthesis after Pfizer vaccination, mainly DIRs, and mainly manifested as edema, rash, fever, and capsular contracture. This paper also reported the possible causes, treatments of DIRs, and limitations of current studies. CONCLUSIONS In this article, we attempted to investigate and discuss all the adverse reactions of cosmetic implants related to COVID-19 vaccination in the current literature, to unmask these reactions and make a more accurate assessment of vaccine safety.
Collapse
Affiliation(s)
- Wen-Jie Cheng
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zi-Xing Cai
- Xiamen University Medical College, Fujian, China
| | - Xiao-Jun Tang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Weber DJ, Rutala WA, Sickbert-Bennett E. Emerging infectious diseases, focus on infection prevention, environmental survival and germicide susceptibility: SARS-CoV-2, Mpox, and Candida auris. Am J Infect Control 2023; 51:A22-A34. [PMID: 37890950 DOI: 10.1016/j.ajic.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND New and emerging infectious diseases continue to represent a public health threat. Emerging infectious disease threats include pathogens increasing in range (eg, Mpox), zoonotic microbes jumping species lines to cause sustained infections in humans via person-to-person transmission (SARS-CoV-2) and multidrug-resistant pathogens (eg, Candida auris). MATERIALS AND METHODS We searched the published English literature and reviewed the selected articles on SARS-CoV-2, Mpox, and Candida auris with a focus on environmental survival, contamination of the patient's hospital environment, susceptibility of the pathogen to antiseptics and disinfectants and infection prevention recommendations. RESULTS All three pathogens (ie, SARS-CoV-2, Mpox, and Candida auris) can survive on surfaces for minutes to hours and for Mpox and C auris for days. Currently available antiseptics (eg, 70%-90% alcohol hand hygiene products) are active against SARS-CoV-2, Mpox and C auris. The U.S Environmental Protection Agency provides separate lists of surface disinfectants active against SARS-CoV-2, Mpox, and C auris. DISCUSSION The risk of environment-to-patient transmission of SARS-CoV-2, Mpox and Candida auris, is very low, low-moderate and high, respectively. In the absence of appropriate patient isolation and use of personal protection equipment, the risk of patient-to-health care provider transmission of SARS-CoV-2, Mpox, and C auris is high, moderate and low, respectively. CONCLUSIONS Appropriate patient isolation, use of personal protective equipment by health care personnel, hand hygiene, and surface disinfection can protect patients and health care personnel from acquiring SARS-CoV-2, Mpox, and C auris from infected patients.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Emily Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
8
|
Zeng Z, Geng X, Wen X, Chen Y, Zhu Y, Dong Z, Hao L, Wang T, Yang J, Zhang R, Zheng K, Sun Z, Zhang Y. Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future. Front Microbiol 2023; 14:1232453. [PMID: 37645223 PMCID: PMC10461067 DOI: 10.3389/fmicb.2023.1232453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital of Central South University, National Regional Medical Center for Nervous System Diseases, Nanchang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Taizhou, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yixi Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zishu Dong
- Department of Zoology, Advanced Research Institute, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Tingting Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jifeng Yang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruobing Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Zhou Q, Zeng F, Meng Y, Liu Y, Liu H, Deng G. Serological response following COVID-19 vaccines in patients living with HIV: a dose-response meta-analysis. Sci Rep 2023; 13:9893. [PMID: 37336939 DOI: 10.1038/s41598-023-37051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
To quantify the pooled rate and risk ratio of seroconversion following the uncomplete, complete, or booster dose of COVID-19 vaccines in patients living with HIV. PubMed, Embase and Cochrane library were searched for eligible studies to perform a systematic review and meta-analysis based on PRIMSA guidelines. The pooled rate and risk ratio of seroconversion were assessed using the Freeman-Tukey double arcsine method and Mantel-Haenszel approach, respectively. Random-effects model was preferentially used as the primary approach to pool results across studies. A total of 50 studies involving 7160 patients living with HIV were analyzed. We demonstrated that only 75.0% (56.4% to 89.9%) patients living with HIV achieved a seroconversion after uncomplete vaccination, which improved to 89.3% (84.2% to 93.5%) after complete vaccination, and 98.4% (94.8% to 100%) after booster vaccination. The seroconversion rates were significantly lower compared to controls at all the stages, while the risk ratios for uncomplete, complete, and booster vaccination were 0.87 (0.77 to 0.99), 0.95 (0.92 to 0.98), and 0.97 (0.94 to 0.99), respectively. We concluded that vaccine doses were associated with consistently improved rates and risk ratios of seroconversion in patients living with HIV, highlighting the significance of booster vaccination for patients living with HIV.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yihuang Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Wang Y, Xu J, Shi L, Yang H, Wang Y. A Meta-Analysis on the Association between Peptic Ulcer Disease and COVID-19 Severity. Vaccines (Basel) 2023; 11:1087. [PMID: 37376476 DOI: 10.3390/vaccines11061087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The association between peptic ulcer disease and the severity of coronavirus disease 2019 (COVID-19) is inconclusive across individual studies. Thus, this study aimed to investigate whether there was a significant association between peptic ulcer disease and COVID-19 severity through a meta-analysis. The electronic databases (Web of Science, Wiley, Springer, EMBASE, Elsevier, Cochrane Library, Scopus and PubMed) were retrieved for all eligible studies. The Stata 11.2 software was used for all statistical analyses. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated by a random-effects meta-analysis model. The heterogeneity was evaluated by the inconsistency index (I2) and Cochran's Q test. Egger's analysis and Begg's analysis were conducted to evaluate the publication bias. Meta-regression analysis and subgroup analysis were done to explore the potential source of heterogeneity. Totally, our findings based on confounding variables-adjusted data indicated that there was no significant association between peptic ulcer disease and the higher risk for COVID-19 severity (pooled OR = 1.17, 95% CI: 0.97-1.41) based on 15 eligible studies with 4,533,426 participants. When the subgroup analysis was performed by age (mean or median), there was a significant association between peptic ulcer disease and a higher risk for COVID-19 severity among studies with age ≥ 60 years old (pooled OR = 1.15, 95% CI: 1.01-1.32), but not among studies with age < 60 years old (pooled OR = 1.16, 95% CI: 0.89-1.50). Our meta-analysis showed that there was a significant association between peptic ulcer disease and a higher risk for COVID-19 severity among older patients but not among younger patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| |
Collapse
|
11
|
Pennacchia F, Rusi E, Ruqa WA, Zingaropoli MA, Pasculli P, Talarico G, Bruno G, Barbato C, Minni A, Tarani L, Galardo G, Pugliese F, Lucarelli M, Ferraguti G, Ciardi MR, Fiore M. Blood Biomarkers from the Emergency Department Disclose Severe Omicron COVID-19-Associated Outcomes. Microorganisms 2023; 11:microorganisms11040925. [PMID: 37110348 PMCID: PMC10146633 DOI: 10.3390/microorganisms11040925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Since its outbreak, Coronavirus disease 2019 (COVID-19), a life-threatening respiratory illness, has rapidly become a public health emergency with a devastating social impact. Lately, the Omicron strain is considered the main variant of concern. Routine blood biomarkers are, indeed, essential for stratifying patients at risk of severe outcomes, and a huge amount of data is available in the literature, mainly for the previous variants. However, only a few studies are available on early routine biochemical blood biomarkers for Omicron-afflicted patients. Thus, the aim and novelty of this study were to identify routine blood biomarkers detected at the emergency room for the early prediction of severe morbidity and/or mortality. Methods: 449 COVID-19 patients from Sapienza University Hospital of Rome were divided into four groups: (1) the emergency group (patients with mild forms who were quickly discharged); (2) the hospital ward group (patients that after the admission in the emergency department were hospitalized in a COVID-19 ward); (3) the intensive care unit (ICU) group (patients that after the admission in the emergency department required intensive assistance); (4) the deceased group (patients that after the admission in the emergency department had a fatal outcome). Results: ANOVA and ROC data showed that high-sensitivity troponin-T (TnT), fibrinogen, glycemia, C-reactive protein, lactate dehydrogenase, albumin, D-dimer myoglobin, and ferritin for both men and women may predict lethal outcomes already at the level of the emergency department. Conclusions: Compared to previous Delta COVID-19 parallel emergency patterns of prediction, Omicron-induced changes in TnT may be considered other early predictors of severe outcomes.
Collapse
Affiliation(s)
- Fiorenza Pennacchia
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Eqrem Rusi
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Wael Abu Ruqa
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | | | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, 02100 Rieti, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | | | - Francesco Pugliese
- Department of Anesthesiology Critical Care Medicine and Pain Therapy, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
12
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
13
|
Mahapatra S, Kannan V, Seshadri S, Ravi V, Sofana Reka S. An IoT-Based Wristband for Automatic People Tracking, Contact Tracing and Geofencing for COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:9902. [PMID: 36560271 PMCID: PMC9785935 DOI: 10.3390/s22249902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/12/2023]
Abstract
The coronavirus disease (COVID-19) pandemic has triggered a huge transformation in the use of existing technologies. Many innovations have been made in the field of contact tracing and tracking. However, studies have shown that there is no holistic system that integrates the overall process from data collection to the proper analysis of the data and actions corresponding to the results. It is critical to identify any contact with infected people and to ensure that they do not interact with others. In this research, we propose an IoT-based system that provides automatic tracking and contact tracing of people using radio frequency identification (RFID) and a global positioning system (GPS)-enabled wristband. Additionally, the proposed system defines virtual boundaries for individuals using geofencing technology to effectively monitor and keep track of infected people. Furthermore, the developed system offers robust and modular data collection, authentication through a fingerprint scanner, and real-time database management, and it communicates the health status of the individuals to appropriate authorities. The validation results prove that the proposed system identifies infected people and curbs the spread of the virus inside organizations and workplaces.
Collapse
Affiliation(s)
- Sharanya Mahapatra
- School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India
| | - Vishali Kannan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India
| | - Srinidhi Seshadri
- School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India
| | - Visvanathan Ravi
- School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India
| | - S. Sofana Reka
- School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India
- Centre for Smart Grid Technologies, Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|