1
|
Fonseca PLC, Braga-Paz I, de Araújo E Santos LCG, Dias RC, de Souza CSA, Carvalho NO, Queiroz DC, Alves HJ, de Araújo JLF, Moreira FRR, Menezes MT, Menezes D, Silva ABPE, Ferreira JGG, Adelino TER, Bernardes AFL, Carobin NV, Carvalho RS, Ferrari CZ, Guimarães NR, Lamounier LO, Souza FG, Vargas LA, Ribeiro MDO, Arruda MB, Alvarez P, Moreira RG, de Oliveira ES, Sabino ADP, de Oliveira JS, Januário JN, Iani FCDM, Souza RPD, Aguiar RS. Retrospective Analysis of Omicron in Minas Gerais, Brazil: Emergence, Dissemination, and Diversification. Microorganisms 2024; 12:1745. [PMID: 39338420 PMCID: PMC11434267 DOI: 10.3390/microorganisms12091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/30/2024] Open
Abstract
Brazil is one of the countries most affected by COVID-19, with the highest number of deaths recorded. Brazilian Health Institutions have reported four main peaks of positive COVID-19 cases. The last two waves were characterized by the emergence of the VOC Omicron and its sublineages. This study aimed to conduct a retrospective surveillance study illustrating the emergence, dissemination, and diversification of the VOC Omicron in 15 regional health units (RHUs) in MG, the second most populous state in Brazil, by combining epidemiological and genomic data. A total of 5643 confirmed positive COVID-19 samples were genotyped using the panels TaqMan SARS-CoV-2 Mutation and 4Plex SC2/VOC Bio-Manguinhos to define mutations classifying the BA.1, BA.2, BA.4, and BA.5 sublineages. While sublineages BA.1 and BA.2 were more prevalent during the third wave, BA.4 and BA.5 dominated the fourth wave in the state. Epidemiological and viral genome data suggest that age and vaccination with booster doses were the main factors related to clinical outcomes, reducing the number of deaths, irrespective of the Omicron sublineages. Complete genome sequencing of 253 positive samples confirmed the circulation of the BA.1, BA.2, BA.4, and BA.5 subvariants, and phylogenomic analysis demonstrated that the VOC Omicron was introduced through multiple international events, followed by transmission within the state of MG. In addition to the four subvariants, other lineages have been identified at low frequency, including BQ.1.1 and XAG. This integrative study reinforces that the evolution of Omicron sublineages was the most significant factor driving the highest peaks of positive COVID-19 cases without an increase in more severe cases, prevented by vaccination boosters.
Collapse
Affiliation(s)
- Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Isabela Braga-Paz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luiza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rillery Calixto Dias
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Carolina Senra Alves de Souza
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte 31585-200, Brazil
| | - Nara Oliveira Carvalho
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Hugo José Alves
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - João Locke Ferreira de Araújo
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Filipe Romero Rebello Moreira
- Departamento de Genetica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariane Talon Menezes
- Departamento de Genetica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Diego Menezes
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Aryel Beatriz Paz E Silva
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jorge Gomes Goulart Ferreira
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | - Natália Virtude Carobin
- Laboratório Institucional de Pesquisa em Biomarcadores, Laboratório de Hematologia Clínica, Departamento de Análises Clínicas e Toxicológicas; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Renée Silva Carvalho
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte 31585-200, Brazil
| | - Carolina Zaniboni Ferrari
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte 31585-200, Brazil
| | | | | | - Fernanda Gil Souza
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luisa Aimeé Vargas
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte 31585-200, Brazil
| | - Marisa de Oliveira Ribeiro
- Institute of Technology in Immunobiology Bio-Manguinhos, Oswaldo Cruz Foundation/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Monica Barcellos Arruda
- Institute of Technology in Immunobiology Bio-Manguinhos, Oswaldo Cruz Foundation/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Patricia Alvarez
- Institute of Technology in Immunobiology Bio-Manguinhos, Oswaldo Cruz Foundation/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Rennan Garcias Moreira
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Adriano de Paula Sabino
- Laboratório Institucional de Pesquisa em Biomarcadores, Laboratório de Hematologia Clínica, Departamento de Análises Clínicas e Toxicológicas; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jaqueline Silva de Oliveira
- Subsecretaria de Vigilância em Saúde, Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte 31585-200, Brazil
| | - José Nélio Januário
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico-Nupad, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | | | - Renan Pedra de Souza
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Instituto D'OR de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
2
|
Bezerra MF, Wallau GDL. Concerted efforts toward genomic surveillance of viral pathogens in immunocompromised individuals. THE LANCET. MICROBE 2024; 5:100853. [PMID: 38583463 DOI: 10.1016/s2666-5247(24)00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Affiliation(s)
| | - Gabriel da Luz Wallau
- Departamento de Entomologia - Instituto Aggeu Magalhães, Recife 50740-465, Brazil; Núcleo de Bioinformática - Instituto Aggeu Magalhães, Recife 50740-465, Brazil
| |
Collapse
|
3
|
Shempela DM, Chambaro HM, Sikalima J, Cham F, Njuguna M, Morrison L, Mudenda S, Chanda D, Kasanga M, Daka V, Kwenda G, Musonda K, Munsaka S, Chilengi R, Sichinga K, Simulundu E. Detection and Characterisation of SARS-CoV-2 in Eastern Province of Zambia: A Retrospective Genomic Surveillance Study. Int J Mol Sci 2024; 25:6338. [PMID: 38928045 PMCID: PMC11203853 DOI: 10.3390/ijms25126338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations have driven the evolution and development of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with potential implications for increased transmissibility, disease severity and vaccine escape among others. Genome sequencing is a technique that allows scientists to read the genetic code of an organism and has become a powerful tool for studying emerging infectious diseases. Here, we conducted a cross-sectional study in selected districts of the Eastern Province of Zambia, from November 2021 to February 2022. We analyzed SARS-CoV-2 samples (n = 76) using high-throughput sequencing. A total of 4097 mutations were identified in 69 SARS-CoV-2 genomes with 47% (1925/4097) of the mutations occurring in the spike protein. We identified 83 unique amino acid mutations in the spike protein of the seven Omicron sublineages (BA.1, BA.1.1, BA.1.14, BA.1.18, BA.1.21, BA.2, BA.2.23 and XT). Of these, 43.4% (36/83) were present in the receptor binding domain, while 14.5% (12/83) were in the receptor binding motif. While we identified a potential recombinant XT strain, the highly transmissible BA.2 sublineage was more predominant (40.8%). We observed the substitution of other variants with the Omicron strain in the Eastern Province. This work shows the importance of pandemic preparedness and the need to monitor disease in the general population.
Collapse
Affiliation(s)
| | - Herman M. Chambaro
- Virology Unit, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka 10101, Zambia;
| | - Jay Sikalima
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (K.S.)
| | - Fatim Cham
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (L.M.)
| | - Michael Njuguna
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (L.M.)
| | - Linden Morrison
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (L.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Duncan Chanda
- University Teaching Hospital, Ministry of Health, Lusaka 10101, Zambia;
| | - Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Victor Daka
- Public Health Department, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola 21692, Zambia;
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (G.K.); (S.M.)
| | - Kunda Musonda
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (R.C.)
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (G.K.); (S.M.)
| | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (R.C.)
| | - Karen Sichinga
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (K.S.)
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Macha Research Trust, Choma 20100, Zambia
| |
Collapse
|
4
|
Demel I, Skopal D, Šafránková E, Rozsívalová P, Jindra P, Šrámek J, Turková A, Vydra J, Labská K, Vedrová J, Čerňan M, Szotkowski T, Móciková H, Hynková L, Šušol O, Kováčová I, Belada D, Hájek R. Effectiveness of tixagevimab/cilgavimab in patients with hematological malignancies as a pre-exposure prophylaxis to prevent severe COVID-19: a Czech retrospective multicenter study. Ann Hematol 2024; 103:981-992. [PMID: 38092996 PMCID: PMC10866774 DOI: 10.1007/s00277-023-05572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Despite lower virulence, the omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) still poses a relevant threat for immunocompromised patients. A retrospective multicentric study was conducted to evaluate the efficacy of pre-exposure prophylaxis with tixagevimab/cilgavimab (Evusheld) with a 6-month follow-up for preventing severe COVID-19 in adult patients with hematology malignancy. Among the 606 patients in the cohort, 96 (16%) contracted COVID-19 with a median of 98.5 days after Evusheld administration. A total of 75% of patients had asymptomatic or mild severity of COVID-19, while just 25% of patients with SARS-CoV-2 positivity had to be hospitalized. Two patients (2%) died directly, and one patient (1%) in association with COVID-19. Eight patients (1.3%) of every cohort experienced adverse events related to Evusheld, mostly grade 1 and of reversible character. It was found that complete vaccination status or positive seroconversion was not associated with lower risk of COVID-19 infection. Previous treatment with an anti-CD20 monoclonal antibody was associated with higher rates of COVID-19, while previous treatment with anti-CD38 monoclonal antibody was not, as was the case for recipients of hematopoietic stem cell transplantation or CAR-T cell therapy. Presence of other comorbidities was not associated with more severe COVID-19. The results support the growing evidence for Evusheld's efficacy against severe COVID-19 in patients with hematology malignancies.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic.
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - David Skopal
- 4th Department of Internal Medicine - Haematology, Hospital and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Eliška Šafránková
- 4th Department of Internal Medicine - Haematology, Hospital and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Petra Rozsívalová
- Hospital Pharmacy, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Jindra
- Department of Haematology & Oncology, University Hospital Pilsen, Pilsen, Czech Republic
| | - Jiří Šrámek
- Department of Haematology & Oncology, University Hospital Pilsen, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Pilsen, Czech Republic
| | - Adéla Turková
- Department of Haematology & Oncology, University Hospital Pilsen, Pilsen, Czech Republic
| | - Jan Vydra
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Klára Labská
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Vedrová
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Čerňan
- Department of Haemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Tomáš Szotkowski
- Department of Haemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Heidi Móciková
- Department of Internal Medicine and Haematology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lenka Hynková
- Department of Internal Medicine and Haematology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ondrej Šušol
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Ingrid Kováčová
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic
| | - David Belada
- 4th Department of Internal Medicine - Haematology, Hospital and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
5
|
Arslan A, Sahbudak Bal Z, Erci E, Yıldırım Arslan S, Bilen NM, Avcu G, Çiçek C, Ozkinay F, Kurugol Z. SARS-CoV-2 reinfections in the pediatric cohort-a single-center experience. J Trop Pediatr 2023; 70:fmad049. [PMID: 38150674 DOI: 10.1093/tropej/fmad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND This study focused on timelines of infection episodes and dominant variants and aims to determine disease severity and outcome of pediatric patients with reinfection. MATERIALS AND METHODS This study retrospectively evaluated the medical records of the hospitalized patients and/or outpatients aged 0-18 with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction between March 2020 and September 2022 at Ege University Children's Hospital. RESULTS Ninety-one pediatric patients reinfected with SARS-CoV-2 were included in the study. There was an underlying disease in 26.4% of the patients. The median time between the two infection episodes was 184 (90-662) days. There were 24 patients (26.3%) with the first infection in pre-Delta period; 17 (18.6%) of them were reinfected in Omicron BA.1 period, while 7 (7.6%) in Omicron BA.4/BA.5 period. Forty-five patients (49.4%) were infected initially in the Delta period; 35 patients (38.4%) were reinfected in the Omicron BA.1 period, while 10 patients (10.9%) were reinfected in the Omicron BA.4/BA.5 period. Twenty-two patients (24.1%) had the first infection in the Omicron BA.1 period and then reinfected in the Omicron BA.4/BA.5 period. Patients with reinfection more frequently displayed a symptom (84.6% vs. 94.5%, p = 0.03). The hospitalization rate significantly declined in reinfection (15.3% vs. 7.6%, p = 0.03). Severe disease, treatment needs and steroid use were decreased in reinfections without a significant difference (p > 0.05). Intensive care unit admission was not altered. CONCLUSION This study revealed that reinfections frequently develop in previously healthy children but do not cause more severe outcomes. The risk of symptomatic reinfections is still high due to the effect of the Omicron variant.
Collapse
Affiliation(s)
- Asli Arslan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Zumrut Sahbudak Bal
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Ece Erci
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Sema Yıldırım Arslan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Nimet Melis Bilen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Gülhadiye Avcu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Candan Çiçek
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Ferda Ozkinay
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Zafer Kurugol
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| |
Collapse
|
6
|
Liu Y, Yang Y, Wang G, Wang D, Shao PL, Tang J, He T, Zheng J, Hu R, Liu Y, Xu Z, Niu D, Lv J, Yang J, Xiao H, Wu S, He S, Tang Z, Liu Y, Tang M, Jiang X, Yuan J, Dai H, Zhang B. Multiplexed discrimination of SARS-CoV-2 variants via plasmonic-enhanced fluorescence in a portable and automated device. Nat Biomed Eng 2023; 7:1636-1648. [PMID: 37735541 DOI: 10.1038/s41551-023-01092-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Portable assays for the rapid identification of lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to aid large-scale efforts in monitoring the evolution of the virus. Here we report a multiplexed assay in a microarray format for the detection, via isothermal amplification and plasmonic-gold-enhanced near-infrared fluorescence, of variants of SARS-CoV-2. The assay, which has single-nucleotide specificity for variant discrimination, single-RNA-copy sensitivity and does not require RNA extraction, discriminated 12 lineages of SARS-CoV-2 (in three mutational hotspots of the Spike protein) and detected the virus in nasopharyngeal swabs from 1,034 individuals at 98.8% sensitivity and 100% specificity, with 97.6% concordance with genome sequencing in variant discrimination. We also report a compact, portable and fully automated device integrating the entire swab-to-result workflow and amenable to the point-of-care detection of SARS-CoV-2 variants. Portable, rapid, accurate and multiplexed assays for the detection of SARS-CoV-2 variants and lineages may facilitate variant-surveillance efforts.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Pan-Lin Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tingzhen He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jintao Zheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dan Niu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuai Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Shuang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhongrong Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yan Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | | | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Balupuri A, Kim JM, Choi KE, No JS, Kim IH, Rhee JE, Kim EJ, Kang NS. Comparative Computational Analysis of Spike Protein Structural Stability in SARS-CoV-2 Omicron Subvariants. Int J Mol Sci 2023; 24:16069. [PMID: 38003257 PMCID: PMC10671153 DOI: 10.3390/ijms242216069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The continuous emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with multiple spike (S) protein mutations pose serious threats to current coronavirus disease 2019 (COVID-19) therapies. A comprehensive understanding of the structural stability of SARS-CoV-2 variants is vital for the development of effective therapeutic strategies as it can offer valuable insights into their potential impact on viral infectivity. S protein mediates a virus' attachment to host cells by binding to angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD), and mutations in this protein can affect its stability and binding affinity. We analyzed S protein structural stability in various Omicron subvariants computationally. Notably, the S protein sequences analyzed in this work were obtained directly from our own sample collection. We evaluated the binding free energy between S protein and ACE2 in several complex forms. Additionally, we measured distances between the RBD of each chain in S protein to analyze conformational changes. Unlike most of the prior studies, we analyzed full-length S protein-ACE2 complexes instead of only RBD-ACE2 complexes. Omicron subvariants including BA.1, BA.2, BA.2.12.1, BA.4/BA.5, BA.2.75, BA.2.75_K147E, BA.4.6 and BA.4.6_N658S showed enhanced stability compared to wild type, potentially due to distinct S protein mutations. Among them, BA.2.75 and BA.4.6_N658S exhibited the highest and lowest level of stability, respectively.
Collapse
Affiliation(s)
- Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (A.B.); (K.-E.C.)
| | - Jeong-Min Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease, Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (J.-M.K.); (J.S.N.); (I.-H.K.); (J.E.R.)
| | - Kwang-Eun Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (A.B.); (K.-E.C.)
| | - Jin Sun No
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease, Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (J.-M.K.); (J.S.N.); (I.-H.K.); (J.E.R.)
| | - Il-Hwan Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease, Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (J.-M.K.); (J.S.N.); (I.-H.K.); (J.E.R.)
| | - Jee Eun Rhee
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease, Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (J.-M.K.); (J.S.N.); (I.-H.K.); (J.E.R.)
| | - Eun-Jin Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease, Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea; (J.-M.K.); (J.S.N.); (I.-H.K.); (J.E.R.)
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (A.B.); (K.-E.C.)
| |
Collapse
|
8
|
Albright C, Van Egeren D, Thakur A, Chakravarty A, White LF, Stoddard M. Antibody escape, the risk of serotype formation, and rapid immune waning: Modeling the implications of SARS-CoV-2 immune evasion. PLoS One 2023; 18:e0292099. [PMID: 37851632 PMCID: PMC10584102 DOI: 10.1371/journal.pone.0292099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
As the COVID-19 pandemic progresses, widespread community transmission of SARS-CoV-2 has ushered in a volatile era of viral immune evasion rather than the much-heralded stability of "endemicity" or "herd immunity." At this point, an array of viral strains has rendered essentially all monoclonal antibody therapeutics obsolete and strongly undermined the impact of vaccinal immunity on SARS-CoV-2 transmission. In this work, we demonstrate that antibody escape resulting in evasion of pre-existing immunity is highly evolutionarily favored and likely to cause waves of short-term transmission. In the long-term, invading strains that induce weak cross-immunity against pre-existing strains may co-circulate with those pre-existing strains. This would result in the formation of serotypes that increase disease burden, complicate SARS-CoV-2 control, and raise the potential for increases in viral virulence. Less durable immunity does not drive positive selection as a trait, but such strains may transmit at high levels if they establish. Overall, our results draw attention to the importance of inter-strain cross-immunity as a driver of transmission trends and the importance of early immune evasion data to predict the trajectory of the pandemic.
Collapse
Affiliation(s)
| | - Debra Van Egeren
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Aditya Thakur
- Boston University, Boston, MA, United States of America
| | | | - Laura F. White
- Boston University School of Public Health, Boston, MA, United States of America
| | | |
Collapse
|
9
|
Chrysostomou AC, Vrancken B, Haralambous C, Alexandrou M, Gregoriou I, Ioannides M, Ioannou C, Kalakouta O, Karagiannis C, Marcou M, Masia C, Mendris M, Papastergiou P, Patsalis PC, Pieridou D, Shammas C, Stylianou DC, Zinieri B, Lemey P, Network TCOMESSAR, Kostrikis LG. Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacton Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021-Oct 2022). Viruses 2023; 15:1933. [PMID: 37766339 PMCID: PMC10535466 DOI: 10.3390/v15091933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021-January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed "Deltacron", was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation-a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus's local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus's epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic's dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation.
Collapse
Affiliation(s)
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Christos Haralambous
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, 1148 Nicosia, Cyprus
| | - Maria Alexandrou
- Microbiology Department, Larnaca General Hospital, 6301 Larnaca, Cyprus
| | - Ioanna Gregoriou
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, 1148 Nicosia, Cyprus
| | | | - Costakis Ioannou
- Medical Laboratory of Ammochostos General Hospital, Ammochostos General Hospital, 5310 Paralimni, Cyprus
| | - Olga Kalakouta
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, 1148 Nicosia, Cyprus
| | | | - Markella Marcou
- Department of Microbiology, Archbishop Makarios III Hospital, 2012 Nicosia, Cyprus
| | - Christina Masia
- Medical Laboratory of Ammochostos General Hospital, Ammochostos General Hospital, 5310 Paralimni, Cyprus
| | - Michail Mendris
- Microbiology Department, Limassol General Hospital, 4131 Limassol, Cyprus
| | | | - Philippos C. Patsalis
- Medicover Genetics, 2409 Nicosia, Cyprus
- Medical School, University of Nicosia, 2417 Nicosia, Cyprus
| | - Despo Pieridou
- Microbiology Department, Nicosia General Hospital, 2029 Nicosia, Cyprus
| | - Christos Shammas
- S.C.I.N.A. Bioanalysis Sciomedical Centre Ltd., 4040 Limassol, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
| | - Barbara Zinieri
- Microbiology Department, Paphos General Hospital, Achepans, 8026 Paphos, Cyprus
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
- Cyprus Academy of Sciences, Letters, and Arts, 60-68 Phaneromenis Street, 1011 Nicosia, Cyprus
| |
Collapse
|
10
|
Acuña-Castillo C, Barrera-Avalos C, Bachelet VC, Milla LA, Inostroza-Molina A, Vidal M, Luraschi R, Vallejos-Vidal E, Mella-Torres A, Valdés D, Reyes-López FE, Imarai M, Rojas P, Sandino AM. An ecological study on reinfection rates using a large dataset of RT-qPCR tests for SARS-CoV-2 in Santiago of Chile. Front Public Health 2023; 11:1191377. [PMID: 37492136 PMCID: PMC10364051 DOI: 10.3389/fpubh.2023.1191377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction As the SARS-CoV-2 continues to evolve, new variants pose a significant threat by potentially overriding the immunity conferred by vaccination and natural infection. This scenario can lead to an upswing in reinfections, amplified baseline epidemic activity, and localized outbreaks. In various global regions, estimates of breakthrough cases associated with the currently circulating viral variants, such as Omicron, have been reported. Nonetheless, specific data on the reinfection rate in Chile still needs to be included. Methods Our study has focused on estimating COVID-19 reinfections per wave based on a sample of 578,670 RT-qPCR tests conducted at the University of Santiago of Chile (USACH) from April 2020 to July 2022, encompassing 345,997 individuals. Results The analysis reveals that the highest rate of reinfections transpired during the fourth and fifth COVID-19 waves, primarily driven by the Omicron variant. These findings hold despite 80% of the Chilean population receiving complete vaccination under the primary scheme and 60% receiving at least one booster dose. On average, the interval between initial infection and reinfection was found to be 372 days. Interestingly, reinfection incidence was higher in women aged between 30 and 55. Additionally, the viral load during the second infection episode was lower, likely attributed to Chile's high vaccination rate. Discussion This study demonstrates that the Omicron variant is behind Chile's highest number of reinfection cases, underscoring its potential for immune evasion. This vital epidemiological information contributes to developing and implementing effective public health policies.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Vivienne C. Bachelet
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis A. Milla
- Centro de Investigaciones Biomédicas y Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Ailén Inostroza-Molina
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mabel Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto Luraschi
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea Mella-Torres
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniel Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana María Sandino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Basoulis D, Tsakanikas A, Gkoufa A, Bitsani A, Karamanakos G, Mastrogianni E, Georgakopoulou VE, Makrodimitri S, Voutsinas PM, Lamprou P, Kontos A, Tsiakas S, Gamaletsou MN, Marinaki S, Sipsas NV. Effectiveness of Oral Nirmatrelvir/Ritonavir vs. Intravenous Three-Day Remdesivir in Preventing Progression to Severe COVID-19: A Single-Center, Prospective, Comparative, Real-Life Study. Viruses 2023; 15:1515. [PMID: 37515201 PMCID: PMC10383489 DOI: 10.3390/v15071515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Nirmatrelvir/ritonavir (NMV/r) and three-day course remdesivir (3RDV) have been approved as early treatments for COVID-19 outpatients not requiring supplemental oxygen. Real-life data on the efficacy of antivirals among immunocompromised patients or directly comparing their effectiveness in preventing hospitalization and/or death are scarce. METHODS Prospective, observational study conducted in a tertiary care hospital, from 1 January 2022 until 15 March 2023, during the prevalence of the Omicron variant. Inverse probability of treatment weighting (IPTW) was used to account for differences between treatment groups. RESULTS We included 521, mainly immunocompromised (56%), patients in our analysis; 356 (68.3%) received 3RDV and 165 (31.7%) NMV/r. Overall, 15/521 (2.9%) patients met the primary end-point of hospitalization at 30 days (3RDV arm: 10/356, 2.8% vs. NMV/r arm: 5/165, 3%, p = 1). On IPTW-adjusted univariable analysis, the choice of treatment did not affect outcomes. In multivariable logistic regression analysis, we found that one (OR 0.26, 95%CI 0.07-0.99, p = 0.049) or two (OR 0.06, 95%CI 0.01-0.55, p = 0.014) vaccine booster shots reduced the risk for adverse outcomes. CONCLUSION In our patient population of high-risk, mainly immunocompromised, vaccinated patients during the prevalence of the Omicron variant, NMV/r and 3RDV were equally effective early treatments for the prevention of hospitalization and/or death.
Collapse
Affiliation(s)
- Dimitrios Basoulis
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
| | | | - Aikaterini Gkoufa
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
| | - Aikaterini Bitsani
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Haematology Clinic and Bone Marrow Transplantation Unit, Laiko General Hospital, 115 27 Athens, Greece
| | | | | | - Vasiliki E Georgakopoulou
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
| | | | | | - Panagiota Lamprou
- Pulmonology Department, Laiko General Hospital, 115 27 Athens, Greece
| | - Athanasios Kontos
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
| | - Stathis Tsiakas
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, 115 27 Athens, Greece
| | | | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, 115 27 Athens, Greece
- Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos V Sipsas
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
- Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
12
|
Islam MA, Kaifa FH, Chandran D, Bhattacharya M, Chakraborty C, Bhattacharya P, Dhama K. XBB.1.5: A new threatening SARS-CoV-2 Omicron subvariant. Front Microbiol 2023; 14:1154296. [PMID: 37143546 PMCID: PMC10152970 DOI: 10.3389/fmicb.2023.1154296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Kishoreganj, Bangladesh
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Hasan Kaifa
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, Odisha, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Prosun Bhattacharya
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Dhama K, Tuglo LS, Chakraborty C, Saikumar G. BF.7 Omicron subvariant (BA.5.2.1.7) posing fears of a rise in COVID-19 cases again: a critical appraisal and salient counteracting strategies. Int J Surg 2023; 109:1058-1059. [PMID: 36917140 PMCID: PMC10132302 DOI: 10.1097/js9.0000000000000286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh
| | - Lawrence S. Tuglo
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Gutulla Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh
| |
Collapse
|
14
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
15
|
Dhama K, Chandran D, Chopra H, Islam MA, Emran TB, Rehman MEU, Dey A, Mohapatra RK, SV P, Mohankumar P, Sharma AK, Bhattacharya P. SARS-CoV-2 emerging Omicron subvariants with a special focus on BF.7 and XBB.1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:1215-1221. [DOI: 10.18006/2022.10(6).1215.1221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron versions have been the sole one circulating for quite some time. Subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 of the Omicron emerged over time and through mutation, with BA.1 responsible for the most severe global pandemic between December 2021 and January 2022. Other Omicron subvariants such as BQ.1, BQ.1.1, BA.4.6, BF.7, BA.2.75.2, XBB.1 appeared recently and could cause a new wave of increased cases amid the ongoing COVID-19 pandemic. There is evidence that certain Omicron subvariants have increased transmissibility, extra spike mutations, and ability to overcome protective effects of COVID-19 neutralizing antibodies through immunological evasion. In recent months, the Omicron BF.7 subvariant has been in the news due to its spread in China and a small number of other countries, raising concerns about a possible rebound in COVID-19 cases. More recently, the Omicron XBB.1.5 subvariant has captured international attention due to an increase in cases in the United States. As a highly transmissible sublineage of Omicron BA.5, as well as having a shorter incubation time and the potential to reinfect or infect immune population, BF.7 has stronger infection ability. It appears that the regional immunological landscape is affected by the amount and timing of previous Omicron waves, as well as the COVID-19 vaccination coverage, which in turn determines whether the increased immune escape of BF.7 and XBB.1.5 subvariants is sufficient to drive new infection waves. Expanding our understanding of the transmission and efficacy of vaccines, immunotherapeutics, and antiviral drugs against newly emerging Omicron subvariants and lineages, as well as bolstering genomic facilities for tracking their spread and maintaining a constant vigilance, and shedding more light on their evolution and mutational events, would help in the development of effective mitigation strategies. Importantly, reducing the occurrence of mutations and recombination in the virus can be aided by bolstering One health approach and emphasizing its significance in combating zoonosis and reversal zoonosis linked with COVID-19. This article provides a brief overview on Omicron variant, its recently emerging lineages and subvairants with a special focus on BF.7 and XBB.1.5 as much more infectious and highly transmissible variations that may once again threaten a sharp increase in COVID-19 cases globally amid the currently ongoing pandemic, along with presenting salient mitigation measures.
Collapse
|