1
|
Moore KA, Ostrowsky JT, Mehr AJ, Johnson RA, Ulrich AK, Moua NM, Fay PC, Hart PJ, Golding JP, Benassi V, Preziosi MP, Adetifa IM, Akpede GO, Ampofo WK, Asogun DA, Barrett ADT, Bausch DG, de Coster I, Emperador DM, Feldmann H, Fichet-Calvet E, Formenty PBH, Garry RF, Grant DS, Günther S, Gupta SB, Jaspard M, Mazzola LT, Okogbenin SA, Roth C, Schmaljohn CS, Osterholm MT. Lassa fever research priorities: towards effective medical countermeasures by the end of the decade. THE LANCET. INFECTIOUS DISEASES 2024; 24:e696-e706. [PMID: 38964363 DOI: 10.1016/s1473-3099(24)00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 07/06/2024]
Abstract
In 2016, WHO designated Lassa fever a priority disease for epidemic preparedness as part of the WHO Blueprint for Action to Prevent Epidemics. One aspect of preparedness is to promote development of effective medical countermeasures (ie, diagnostics, therapeutics, and vaccines) against Lassa fever. Diagnostic testing for Lassa fever has important limitations and key advancements are needed to ensure rapid and accurate diagnosis. Additionally, the only treatment available for Lassa fever is ribavirin, but controversy exists regarding its effectiveness. Finally, no licensed vaccines are available for the prevention and control of Lassa fever. Ongoing epidemiological and behavioural studies are also crucial in providing actionable information for medical countermeasure development, use, and effectiveness in preventing and treating Lassa fever. This Personal View provides current research priorities for development of Lassa fever medical countermeasures based on literature published primarily in the last 5 years and consensus opinion of 20 subject matter experts with broad experience in public health or the development of diagnostics, therapeutics, and vaccines for Lassa fever. These priorities provide an important framework to ensure that Lassa fever medical countermeasures are developed and readily available for use in endemic and at-risk areas by the end of the decade.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca A Johnson
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Peter J Hart
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | | | | | | | | | - George O Akpede
- Ambrose Alli University, Ekpoma, Nigeria; Institute of Viral and Emergent Pathogens Control and Research (formerly, Institute of Lassa Fever Research and Control), Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | | | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel G Bausch
- FIND, Geneva, Switzerland; Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ilse de Coster
- Centre for the Evaluation of Vaccination, University of Antwerp, Antwerp, Belgium
| | | | - Heinz Feldmann
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | - Robert F Garry
- Tulane University, New Orleans, LA, USA; Zalgen Labs, Frederick, MD, USA; Global Viral Network, Baltimore, MD, USA
| | - Donald S Grant
- Kenema Government Hospital, Ministry of Health and Sanitation, Freetown, Sierra Leone; College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Stephan Günther
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Swati B Gupta
- lnternational AIDS Vaccine Initiative, New York, NY, USA
| | - Marie Jaspard
- The Alliance for International Medical Action, Dakar, Senegal; Saint-Antoine Hospital, Infectious Disease Department, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM Unit 1136 Institut Pierre Louis D'Epidémiologie et de Sante Publique, Paris, France
| | | | | | - Cathy Roth
- UK Foreign, Commonwealth and Development Office, London, UK
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, Maryland, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Vazquez CA, Escudero-Pérez B, Hayashi JM, Leon KE, Moreira JP, Castañeda Cataña MA, Groseth A, Ott M, Oestereich L, Muñoz-Fontela C, Garcia CC, Cordo SM. Intracellular lipid droplets are exploited by Junín virus in a nucleoprotein-dependent process. J Cell Sci 2024; 137:jcs261745. [PMID: 39292070 DOI: 10.1242/jcs.261745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Lipid droplets (LDs) are organelles involved in lipid storage, maintenance of energy homeostasis, protein sequestration, signaling events and inter-organelle interactions. Recently, LDs have been shown to favor the replication of members from different viral families, such as the Flaviviridae and Coronaviridae. In this work, we show that LDs are essential organelles for members of the Arenaviridae family. A virus-driven reduction of LD number was observed in cultures infected with Junín mammarenavirus (JUNV), caused in part by action of the viral nucleoprotein. Notably, we identified a new pool of nucleoprotein and viral RNA that localizes in the vicinity of LDs, suggesting that LDs play a role during the viral replication cycle. Regarding the mechanism behind LD exhaustion, we found evidence that lipophagy is involved in LD degradation with the resulting fatty acids being substrates of fatty acid β-oxidation, which fuels viral multiplication. This work highlights the importance of LDs during the replication cycle of JUNV, contributing to the knowledge of the metabolic changes these mammarenaviruses cause in their hosts.
Collapse
Affiliation(s)
- Cecilia Alejandra Vazquez
- Laboratorio de Procesos Moleculares de la Interacción Virus-Célula, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA)-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428EHA, Argentina
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA)-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428EHA, Argentina
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | | | | | | | - Mayra Alejandra Castañeda Cataña
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA)-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428EHA, Argentina
| | - Allison Groseth
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Cybele Carina Garcia
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA)-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428EHA, Argentina
| | - Sandra Myriam Cordo
- Laboratorio de Procesos Moleculares de la Interacción Virus-Célula, Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA)-Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428EHA, Argentina
| |
Collapse
|
3
|
Peter AS, Hoffmann DS, Klier J, Lange CM, Moeller J, Most V, Wüst CK, Beining M, Gülesen S, Junker H, Brumme B, Schiffner T, Meiler J, Schoeder CT. Strategies of rational and structure-driven vaccine design for Arenaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105626. [PMID: 38908736 DOI: 10.1016/j.meegid.2024.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.
Collapse
Affiliation(s)
- Antonia Sophia Peter
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Dieter S Hoffmann
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johannes Klier
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina M Lange
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Johanna Moeller
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany
| | - Victoria Most
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Christina K Wüst
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Molecular Medicine Studies, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Max Beining
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; SECAI, School of Embedded Composite Artificial Intelligence, Dresden/Leipzig, Germany
| | - Sevilay Gülesen
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Hannes Junker
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Birke Brumme
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Torben Schiffner
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; The Scripps Research Institute, Department for Immunology and Microbiology, La Jolla, CA, United States
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Clara T Schoeder
- Institute for Drug Discovery, Leipzig University, Faculty of Medicine, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany.
| |
Collapse
|
4
|
Murphy H, Ly H. Correction: Murphy, H.; Ly, H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines 2022, 10, 1668. Vaccines (Basel) 2024; 12:909. [PMID: 39204075 PMCID: PMC11358918 DOI: 10.3390/vaccines12080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The authors would like to make the following corrections to this published paper [...].
Collapse
Affiliation(s)
| | - Hinh Ly
- Comparative & Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| |
Collapse
|
5
|
Madueme PGU, Chirove F. A systematic review of mathematical models of Lassa fever. Math Biosci 2024; 374:109227. [PMID: 38844262 DOI: 10.1016/j.mbs.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
This systematic review, conducted following the PRISMA guidelines, scrutinizes mathematical models employed in the study of Lassa fever. The analysis revealed the inherent heterogeneity in both models and data, posing significant challenges to parameter estimation. While health and behavioral interventions exhibit promise in mitigating the disease's spread, their efficacy is contingent upon contextual factors. Identified through this review are critical gaps, limitations, and avenues for future research, necessitating increased harmonization and standardization in modeling approaches. The considerations of seasonal and spatial variations emerge as crucial elements demanding targeted investigation. The perpetual threat of emerging diseases, coupled with the enduring public health impact of Lassa fever, underscores the imperative for sustained research endeavors and investments in mathematical modeling. The conclusion underscored that while mathematical modeling remains an invaluable tool in the combat against Lassa fever, its optimal utilization mandates multidisciplinary collaboration, refined data collection methodologies, and an enriched understanding of the intricate disease dynamics. This comprehensive approach is essential for effectively reducing the burden of Lassa fever and safeguarding the health of vulnerable populations.
Collapse
Affiliation(s)
- Praise-God Uchechukwu Madueme
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Faraimunashe Chirove
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
6
|
Ly H. Progress toward the development of Lassa vaccines. Expert Rev Vaccines 2024; 23:5-7. [PMID: 38044877 PMCID: PMC10757453 DOI: 10.1080/14760584.2023.2290683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
7
|
Sulis G, Peebles A, Basta NE. Lassa fever vaccine candidates: A scoping review of vaccine clinical trials. Trop Med Int Health 2023; 28:420-431. [PMID: 37095630 PMCID: PMC10247453 DOI: 10.1111/tmi.13876] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Lassa fever (LF) is caused by a viral pathogen with pandemic potential. LF vaccines have the potential to prevent significant disease in individuals at risk of infection, but no such vaccine has been licensed or authorised for use thus far. We conducted a scoping review to identify and compare registered phase 1, 2 or 3 clinical trials of LF vaccine candidates, and appraise the current trajectory of LF vaccine development. METHOD We systematically searched 24 trial registries, PubMed, relevant conference abstracts and additional grey literature sources up to 27 October 2022. After extracting key details about each vaccine candidate and each eligible trial, we qualitatively synthesised the evidence. RESULTS We found that four LF vaccine candidates (INO-4500, MV-LASV, rVSV∆G-LASV-GPC, and EBS-LASV) have entered the clinical stage of assessment. Five phase 1 trials (all focused on healthy adults) and one phase 2 trial (involving a broader age group from 18 months to 70 years) evaluating one of these vaccines have been registered to date. Here, we describe the characteristics of each vaccine candidate and trial and compare them to WHO's target product profile for Lassa vaccines. CONCLUSION Though LF vaccine development is still in early stages, current progress towards a safe and effective vaccine is encouraging.
Collapse
Affiliation(s)
- Giorgia Sulis
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alexandra Peebles
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Nicole E. Basta
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Piamonte BLC, Easton A, Wood GK, Davies NWS, Granerod J, Michael BD, Solomon T, Thakur KT. Addressing vaccine-preventable encephalitis in vulnerable populations. Curr Opin Neurol 2023; 36:185-197. [PMID: 37078664 DOI: 10.1097/wco.0000000000001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Vaccinations have been pivotal in lowering the global disease burden of vaccine-preventable encephalitides, including Japanese encephalitis, tick-borne encephalitis, measles encephalitis, and rabies encephalitis, among others. RECENT FINDINGS Populations vulnerable to vaccine-preventable infections that may lead to encephalitis include those living in endemic and rural areas, military members, migrants, refugees, international travelers, younger and older persons, pregnant women, the immunocompromised, outdoor, healthcare and laboratory workers, and the homeless. There is scope for improving the availability and distribution of vaccinations, vaccine equity, surveillance of vaccine-preventable encephalitides, and public education and information. SUMMARY Addressing these gaps in vaccination strategies will allow for improved vaccination coverage and lead to better health outcomes for those most at risk for vaccine-preventable encephalitis.
Collapse
Affiliation(s)
- Bernadeth Lyn C Piamonte
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ava Easton
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
| | - Greta K Wood
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
| | - Nicholas W S Davies
- The Encephalitis Society, Malton
- Department of Neurology, Chelsea and Westminster Hospital, NHS Trust
| | - Julia Granerod
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- Dr JGW Consulting Ltd., London
| | - Benedict D Michael
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
- Department of Neurology, The Walton Centre NHS Foundation Trust
| | - Tom Solomon
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
- Department of Neurology, The Walton Centre NHS Foundation Trust
- Department of Neurological Science, University of Liverpool, Liverpool, United Kingdom
| | - Kiran T Thakur
- The Encephalitis Society, Malton
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, USA
| |
Collapse
|
9
|
Aloke C, Obasi NA, Aja PM, Emelike CU, Egwu CO, Jeje O, Edeogu CO, Onisuru OO, Orji OU, Achilonu I. Combating Lassa Fever in West African Sub-Region: Progress, Challenges, and Future Perspectives. Viruses 2023; 15:146. [PMID: 36680186 PMCID: PMC9864412 DOI: 10.3390/v15010146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Lassa fever (LF) is a rodent-borne disease that threatens human health in the sub-region of West Africa where the zoonotic host of Lassa virus (LASV) is predominant. Currently, treatment options for LF are limited and since no preventive vaccine is approved for its infectivity, there is a high mortality rate in endemic areas. This narrative review explores the transmission, pathogenicity of LASV, advances, and challenges of different treatment options. Our findings indicate that genetic diversity among the different strains of LASV and their ability to circumvent the immune system poses a critical challenge to the development of LASV vaccines/therapeutics. Thus, understanding the biochemistry, physiology and genetic polymorphism of LASV, mechanism of evading host immunity are essential for development of effective LASV vaccines/therapeutics to combat this lethal viral disease. The LASV nucleoprotein (NP) is a novel target for therapeutics as it functions significantly in several aspects of the viral life cycle. Consequently, LASV NP inhibitors could be employed as effective therapeutics as they will potentially inhibit LASV replication. Effective preventive control measures, vaccine development, target validation, and repurposing of existing drugs, such as ribavirin, using activity or in silico-based and computational bioinformatics, would aid in the development of novel drugs for LF management.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology (MUST), Mbarara P.O. Box 1410, Uganda
- Department of Medical Biochemistry, Kampala International University, Bushenyi, Ishaka P.O. Box 71, Uganda
| | - Chinedum Uche Emelike
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Chinedu Ogbonnia Egwu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Chuks Oswald Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| |
Collapse
|