1
|
Laban N, Bosomprah S, Chilengi R, Simuyandi M, Chisenga C, Ng’ombe H, Musukuma-Chifulo K, Goodier M. Human cytomegalovirus seropositivity and its influence on oral rotavirus vaccine immunogenicity: a specific concern for HIV-exposed-uninfected infants. Clin Exp Immunol 2024; 217:99-108. [PMID: 38546123 PMCID: PMC11188542 DOI: 10.1093/cei/uxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 06/21/2024] Open
Abstract
Oral rotavirus vaccines demonstrate diminished immunogenicity in low-income settings where human cytomegalovirus infection is acquired early in childhood and modulates immunity. We hypothesized that human cytomegalovirus infection around the time of vaccination may influence immunogenicity. We measured plasma human cytomegalovirus-specific immunoglobulin M antibodies in rotavirus vaccinated infants from 6 weeks to 12 months old and compared rotavirus immunoglobulin A antibody titers between human cytomegalovirus seropositive and seronegative infants. There was no evidence of an association between human cytomegalovirus serostatus at 9 months and rotavirus-specific antibody titers at 12 months (geometric mean ratio 1.01, 95% CI: 0.70, 1.45; P = 0.976) or fold-increase in RV-IgA titer between 9 and 12 months (risk ratio 0.999, 95%CI: 0.66, 1.52; P = 0.995) overall. However, HIV-exposed-uninfected infants who were seropositive for human cytomegalovirus at 9 months old had a 63% reduction in rotavirus antibody geometric mean titers at 12 months compared to HIV-exposed-uninfected infants who were seronegative for human cytomegalovirus (geometric mean ratio 0.37, 95% CI: 0.17, 0.77; P = 0.008). While the broader implications of human cytomegalovirus infections on oral rotavirus vaccine response might be limited in the general infant population, the potential impact in the HIV-exposed-uninfected infants cannot be overlooked. This study highlights the complexity of immunological responses and the need for targeted interventions to ensure oral rotavirus vaccine efficacy, especially in vulnerable subpopulations.
Collapse
Affiliation(s)
- Natasha Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Samuel Bosomprah
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Harriet Ng’ombe
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Kalo Musukuma-Chifulo
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Martin Goodier
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Flow Cytometry and Immunology Facility, Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
2
|
Mwape I, Laban NM, Chibesa K, Moono A, Silwamba S, Malisheni MM, Chisenga C, Chauwa A, Simusika P, Phiri M, Simuyandi M, Chilengi R, De Beer C, Ojok D. Characterization of Rotavirus Strains Responsible for Breakthrough Diarrheal Diseases among Zambian Children Using Whole Genome Sequencing. Vaccines (Basel) 2023; 11:1759. [PMID: 38140164 PMCID: PMC10748035 DOI: 10.3390/vaccines11121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence of rotavirus (RV) infection among vaccinated children in high-burden settings poses a threat to further disease burden reduction. Genetically altered viruses have the potential to evade both natural infection and vaccine-induced immune responses, leading to diarrheal diseases among vaccinated children. Studies characterizing RV strains responsible for breakthrough infections in resource-limited countries where RV-associated diarrheal diseases are endemic are limited. We aimed to characterize RV strains detected in fully vaccinated children residing in Zambia using next-generation sequencing. We conducted whole genome sequencing on Illumina MiSeq. Whole genome assembly was performed using Geneious Prime 2023.1.2. A total of 76 diarrheal stool specimens were screened for RV, and 4/76 (5.2%) were RV-positive. Whole genome analysis revealed RVA/Human-wt/ZMB/CIDRZ-RV2088/2020/G1P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and RVA/Human-wt/ZMB/CIDRZ-RV2106/2020/G12P[4]-I1-R2-C2-M2-A2-N1-T2-E1-H2 strains were mono and multiple reassortant (exchanged genes in bold) respectively, whilst RVA/Human-wt/ZMB/CIDRZ-RV2150/2020/G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 was a typical Wa-like strain. Comparison of VP7 and VP4 antigenic epitope of breakthrough strains and Rotarix strain revealed several amino acid differences. Variations in amino acids in antigenic epitope suggested they played a role in immune evasion of neutralizing antibodies elicited by vaccination. Findings from this study have the potential to inform national RV vaccination strategies and the design of highly efficacious universal RV vaccines.
Collapse
Affiliation(s)
- Innocent Mwape
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa;
| | - Natasha Makabilo Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kennedy Chibesa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein P.O. Box 339, South Africa
| | - Andrew Moono
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Suwilanji Silwamba
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | | | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Adriace Chauwa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Paul Simusika
- University Teaching Hospitals, Lusaka 10101, Zambia
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
| | - Mabvuto Phiri
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| | - Corena De Beer
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa;
| | - David Ojok
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (N.M.L.); (A.C.)
| |
Collapse
|
3
|
Chauwa A, Bosomprah S, Laban NM, Phiri B, Chibuye M, Chilyabanyama ON, Munsaka S, Simuyandi M, Mwape I, Mubanga C, Chobe MC, Chisenga C, Chilengi R. Maternal and Infant Histo-Blood Group Antigen (HBGA) Profiles and Their Influence on Oral Rotavirus Vaccine (Rotarix TM) Immunogenicity among Infants in Zambia. Vaccines (Basel) 2023; 11:1303. [PMID: 37631871 PMCID: PMC10458424 DOI: 10.3390/vaccines11081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX®) vaccine-induced responses in Zambia. We studied 135 mother-infant pairs under a rotavirus vaccine clinical trial, with infants aged 6 to 12 weeks at pre-vaccination up to 12 months old. We determined maternal and infant ABO/H, Lewis, and secretor HBGA phenotypes, and infant FUT2 HBGA genotypes. Vaccine immunogenicity was measured as anti-rotavirus IgA antibody titres. Overall, 34 (31.3%) children were seroconverted at 14 weeks, and no statistically significant difference in seroconversion was observed across the various HBGA profiles in early infant life. We also observed a statistically significant difference in rotavirus-IgA titres across infant HBGA profiles at 12 months, though no statistically significant difference was observed between the study arms. There was no association between maternal HBGA profiles and infant vaccine immunogenicity. Overall, infant HBGAs were associated with RV vaccine immunogenicity at 12 months as opposed to in early infant life. Further investigation into the low efficacy of ROTARIX® and appropriate intervention is key to unlocking the full vaccine benefits for U5 children.
Collapse
Affiliation(s)
- Adriace Chauwa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Samuel Bosomprah
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana
| | - Natasha Makabilo Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Bernard Phiri
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Mwelwa Chibuye
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Obvious Nchimunya Chilyabanyama
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Innocent Mwape
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Cynthia Mubanga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Masuzyo Chirwa Chobe
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| |
Collapse
|