1
|
Confort MP, Arnaud F, Ratinier M. Guidelines for In Vitro Production and Quantification of Rift Valley Fever Virus. Methods Mol Biol 2024; 2824:91-104. [PMID: 39039408 DOI: 10.1007/978-1-0716-3926-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is an arthropod-borne virus (arbovirus) responsible for a severe zoonotic disease affecting a wide range of domestic and wild ruminants as well as humans. RVFV is endemic in many African countries and has also caused outbreaks in Madagascar and Arabian Peninsula. With regard to its wide geographical distribution, its potential to emerge in a new area, and its capability to trigger major health and economic crisis, it is essential to study and better understand several aspects of its life cycle and, in particular, its interactions with mammalian hosts and arthropod vectors. To do so, it is key for researchers to be able to amplify in vitro viral strains isolated from the field and determine accurately the viral titers of RVFV stocks. In this chapter, we present protocols that can be easily implemented to produce and titrate RVFV stocks in your laboratory.
Collapse
Affiliation(s)
- Marie-Pierre Confort
- EPHE, Université PSL, INRAE, Université Claude Bernard Lyon 1, IVPC, UMR754, Lyon, France
| | - Frédérick Arnaud
- EPHE, Université PSL, INRAE, Université Claude Bernard Lyon 1, IVPC, UMR754, Lyon, France
| | - Maxime Ratinier
- EPHE, Université PSL, INRAE, Université Claude Bernard Lyon 1, IVPC, UMR754, Lyon, France.
| |
Collapse
|
2
|
Zhou N, Huang E, Guo X, Xiong Y, Xie J, Cai T, Du Y, Wu Q, Guo S, Han W, Zhang H, Xing D, Zhao T, Jiang Y. Cell fusing agent virus isolated from Aag2 cells does not vertically transmit in Aedes aegypti via artificial infection. Parasit Vectors 2023; 16:402. [PMID: 37932781 PMCID: PMC10626676 DOI: 10.1186/s13071-023-06033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Cell fusing agent virus (CFAV) was the first insect-specific virus to be characterized, and has been reported to negatively influence the growth of arboviruses such as dengue, Zika, and La Cross, making it a promising biocontrol agent for mosquito-borne disease prevention. Aedes aegypti Aag2 cells were naturally infected with CFAV. However, the ability of this virus to stably colonize an Ae. aegypti population via artificial infection and how it influences the vector competence of this mosquito have yet to be demonstrated. METHODS CFAV used in this study was harvested from Aag2 cells and its complete genome sequence was obtained by polymerase chain reaction and rapid amplification of complementary DNA ends, followed by Sanger sequencing. Phylogenetic analysis of newly identified CFAV sequences and other sequences retrieved from GenBank was performed. CFAV stock was inoculated into Ae. aegypti by intrathoracic injection, the survival of parental mosquitoes was monitored and CFAV copies in the whole bodies, ovaries, and carcasses of the injected F0 generation and in the whole bodies of the F1 generation on different days were examined by reverse transcription-quantitative polymerase chain reaction. RESULTS The virus harvested from Aag2 cells comprised a mixture of three CFAV strains. All genome sequences of CFAV derived from Aag2 cells clustered into one clade but were far from those isolated or identified from Ae. aegypti. Aag2-derived CFAV efficiently replicated in the mosquito body and did not attenuate the survival of Ae. aegypti. However, the viral load in the ovarian tissues was much lower than that in other tissues and the virus could not passage to the offspring by vertical transmission. CONCLUSIONS The results of this study demonstrate that Aag2-derived CFAV was not vertically transmitted in Ae. aegypti and provide valuable information on the colonization of mosquitoes by this virus.
Collapse
Affiliation(s)
- Ningxin Zhou
- Public Health School of Fujian Medical University, Fuzhou, 350122, China
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Enjiong Huang
- Fuzhou International Travel Healthcare Center, Fuzhou, 350001, China
| | - Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yiping Xiong
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jingwen Xie
- Public Health School of Fujian Medical University, Fuzhou, 350122, China
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tong Cai
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yutong Du
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qixing Wu
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sihan Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wanrong Han
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Life Science College, Southwest Forestry University, Kunming, 650224, China
| | - Hengduan Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
3
|
A Live-Attenuated Zika Virus Vaccine with High Production Capacity Confers Effective Protection in Neonatal Mice. J Virol 2021; 95:e0038321. [PMID: 33910950 DOI: 10.1128/jvi.00383-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy has been linked to congenital abnormalities, such as microcephaly in infants. An efficacious vaccine is desirable for preventing the potential recurrence of ZIKV epidemic. Here, we report the generation of an attenuated ZIKV (rGZ02a) that has sharply decreased virulence in mice but grows to high titers in Vero cells, a widely approved cell line for manufacturing human vaccines. Compared to the wild-type ZIKV (GZ02) and a plasmid-launched rGZ02p, rGZ02a has 3 unique amino acid alterations in the envelope (E, S304F), nonstructural protein 1 (NS1, R103K), and NS5 (W637R). rGZ02a is more sensitive to type I interferon than GZ02 and rGZ02p, and causes no severe neurological disorders in either wild-type neonatal C57BL/6 mice or type I interferon receptor knockout (Ifnar1-/-) C57BL/6 mice. Immunization with rGZ02a elicits robust inhibitory antibody responses with a certain long-term durability. Neonates born to the immunized dams are effectively protected against ZIKV-caused neurological disorders and brain damage. rGZ02a as a booster vaccine greatly improves the protective immunity primed by Ad2-prME, an adenovirus-vectored vaccine expressing ZIKV prM and E proteins. Our results illustrate that rGZ02a-induced maternal immunity can be transferred to the neonates and confer effective protection. Hence, rGZ02a may be developed as an alternative live-attenuated vaccine and warrants further evaluation. IMPORTANCE Zika virus (ZIKV), a mosquito-borne flavivirus that has caused global outbreaks since 2013, is associated with severe neurological disorders, such as Guillian-Barré syndrome in adults and microcephaly in infants. The ZIKV epidemic has gradually subsided, but a safe and effective vaccine is still desirable to prevent its potential recurrence, especially in countries of endemicity with competent mosquito vectors. Here, we describe a novel live-attenuated ZIKV, rGZ02a, that carries 3 unique amino acid alterations compared to the wild-type GZ02 and a plasmid-launched rGZ02p. The growth capacity of rGZ02a is comparable to GZ02 in Vero cells, but the pathogenicity is significantly attenuated in two mice models. Immunization with rGZ02a elicits robust inhibitory antibody responses in the dams and effectively protects their offspring against ZIKV disease. Importantly, in a heterologous prime-boost regimen, rGZ02a effectively boosts the protective immunity primed by an adenovirus-vectored vaccine. Thus, rGZ02a is a promising candidate for a live-attenuated ZIKV vaccine.
Collapse
|
4
|
Karabağ C, Jones ML, Reyes-Aldasoro CC. Volumetric Semantic Instance Segmentation of the Plasma Membrane of HeLa Cells. J Imaging 2021; 7:93. [PMID: 39080881 PMCID: PMC8321355 DOI: 10.3390/jimaging7060093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, an unsupervised volumetric semantic instance segmentation of the plasma membrane of HeLa cells as observed with serial block face scanning electron microscopy is described. The resin background of the images was segmented at different slices of a 3D stack of 518 slices with 8192 × 8192 pixels each. The background was used to create a distance map, which helped identify and rank the cells by their size at each slice. The centroids of the cells detected at different slices were linked to identify them as a single cell that spanned a number of slices. A subset of these cells, i.e., the largest ones and those not close to the edges were selected for further processing. The selected cells were then automatically cropped to smaller regions of interest of 2000 × 2000 × 300 voxels that were treated as cell instances. Then, for each of these volumes, the nucleus was segmented, and the cell was separated from any neighbouring cells through a series of traditional image processing steps that followed the plasma membrane. The segmentation process was repeated for all the regions of interest previously selected. For one cell for which the ground truth was available, the algorithm provided excellent results in Accuracy (AC) and the Jaccard similarity Index (JI): nucleus: JI =0.9665, AC =0.9975, cell including nucleus JI =0.8711, AC =0.9655, cell excluding nucleus JI =0.8094, AC =0.9629. A limitation of the algorithm for the plasma membrane segmentation was the presence of background. In samples with tightly packed cells, this may not be available. When tested for these conditions, the segmentation of the nuclear envelope was still possible. All the code and data were released openly through GitHub, Zenodo and EMPIAR.
Collapse
Affiliation(s)
- Cefa Karabağ
- giCentre, Department of Computer Science, School of Mathematics, Computer Science and Engineering, City, University of London, London EC1V 0HB, UK;
| | - Martin L. Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK;
| | - Constantino Carlos Reyes-Aldasoro
- giCentre, Department of Computer Science, School of Mathematics, Computer Science and Engineering, City, University of London, London EC1V 0HB, UK;
| |
Collapse
|
5
|
Adam A, Fontes-Garfias CR, Sarathy VV, Liu Y, Luo H, Davis E, Li W, Muruato AE, Wang B, Ahatov R, Mahmoud Y, Shan C, Osman SR, Widen SG, Barrett ADT, Shi PY, Wang T. A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. NPJ Vaccines 2021; 6:27. [PMID: 33597526 PMCID: PMC7889622 DOI: 10.1038/s41541-021-00288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yang Liu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily Davis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenqian Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Renat Ahatov
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yoseph Mahmoud
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha R Osman
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Molecular Genomics Core Facility, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
Spencer Clinton JL, Tran LL, Vogt MB, Rowley DR, Kimata JT, Rico-Hesse R. IP-10 and CXCR3 signaling inhibit Zika virus replication in human prostate cells. PLoS One 2020; 15:e0244587. [PMID: 33378361 PMCID: PMC7773246 DOI: 10.1371/journal.pone.0244587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/12/2020] [Indexed: 11/18/2022] Open
Abstract
Our previous studies have shown that Zika virus (ZIKV) replicates in human prostate cells, suggesting that the prostate may serve as a long-term reservoir for virus transmission. Here, we demonstrated that the innate immune responses generated to three distinct ZIKV strains (all isolated from human serum) were significantly different and dependent on their passage history (in mosquito, monkey, or human cells). In addition, some of these phenotypic differences were reduced by a single additional cell culture passage, suggesting that viruses that have been passaged more than 3 times from the patient sample will no longer reflect natural phenotypes. Two of the ZIKV strains analyzed induced high levels of the IP-10 chemokine and IFNγ in human prostate epithelial and stromal mesenchymal stem cells. To further understand the importance of these innate responses on ZIKV replication, we measured the effects of IP-10 and its downstream receptor, CXCR3, on RNA and virus production in prostate cells. Treatment with IP-10, CXCR3 agonist, or CXCR3 antagonist significantly altered ZIKV viral gene expression, depending on their passage in cells of relevant hosts (mosquito or human). We detected differences in gene expression of two primary CXCR3 isoforms (CXCR3-A and CXCR3-B) on the two cell types, possibly explaining differences in viral output. Lastly, we examined the effects of IP-10, agonist, or antagonist on cell death and proliferation under physiologically relevant infection rates, and detected no significant differences. Although we did not measure protein expression directly, our results indicate that CXCR3 signaling may be a target for therapeutics, to ultimately stop sexual transmission of this virus.
Collapse
Affiliation(s)
- Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Linda L. Tran
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Using Next Generation Sequencing to Study the Genetic Diversity of Candidate Live Attenuated Zika Vaccines. Vaccines (Basel) 2020; 8:vaccines8020161. [PMID: 32260110 PMCID: PMC7349499 DOI: 10.3390/vaccines8020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted positive-sense RNA virus in the family Flaviviridae. Candidate live-attenuated vaccine (LAV) viruses with engineered deletions in the 3’ untranslated region (UTR) provide immunity and protection in animal models of ZIKV infection, and phenotypic studies show that LAVs retain protective abilities following in vitro passage. The present study investigated the genetic diversity of wild-type (WT) parent ZIKV and its candidate LAVs using next generation sequencing analysis of five sequential in vitro passages. The results show that genomic entropy of WT ZIKV steadily increases during in vitro passage, whereas that of LAVs also increased by passage number five but was variable throughout passaging. Additionally, clusters of single nucleotide variants (SNVs) were found to be present in the pre-membrane/membrane (prM), envelope (E), nonstructural protein NS1 (NS1), and other nonstructural protein genes, depending on the specific deletion, whereas in the parent WT ZIKV, they are more abundant in prM and NS1. Ultimately, both the parental WT and LAV derivatives increase in genetic diversity, with evidence of adaptation following passage.
Collapse
|
8
|
Morelli F, Souza RP, Cruz TED, Damke GMZF, Damke E, Suehiro TT, Silva VRSD, Consolaro MEL. Zika virus infection in the genital tract of non-pregnant females: a systematic review. Rev Inst Med Trop Sao Paulo 2020; 62:e16. [PMID: 32130356 PMCID: PMC7051180 DOI: 10.1590/s1678-9946202062016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
This review provides a general overview on the positivity and persistence of Zika virus (ZIKV) in female genital tract (FGT) of non-pregnant women and animals, as well as in cell cultures, and its influence on FGT health. We performed a systematic review based on the PRISMA statement to identify studies focused on "Zika virus" and "non-pregnant female" in PubMed, Embase, Scopus Scholar and Web of Knowledge databases of full-text papers and abstracts published in English, with no restrictions regarding the initial date of publication, up to August 2019. Our search terms yielded 625 records, that were 108 after removal of duplicates, leaving 517 items for title and abstract reviews. Of these, 475 did not meet the inclusion criteria, leaving 42 records for full-text review and resulting in the exclusion of 6 additional records. The remaining 36 met our inclusion criteria. Variations were observed regarding the presence and persistence of ZIKV in lower and upper genital samples. However, the FGT was the place in which ZIKV RNA has been detected, sometimes for relatively long periods, even after the clearance from blood and urine. In addition to the vagina and cervix, the endometrium, uterus and ovary (oocytes and follicles) could also be involved in persistent ZIKV infections. Further prospective studies are needed to assess the effect of ZIKV on FGT health.
Collapse
Affiliation(s)
- Fabrício Morelli
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Raquel Pantarotto Souza
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Taís Elisângela da Cruz
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Gabrielle Marconi Zago Ferreira Damke
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Edilson Damke
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Tamy Tuani Suehiro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Vânia Ramos Sela da Silva
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Programa de Pós-Graduação em Biociências e Fisiopatologia, Maringá, Paraná, Brazil
| |
Collapse
|