1
|
Wilson JM, Erickson L, Levin M, Ailsworth SM, Commins SP, Platts-Mills TAE. Tick bites, IgE to galactose-alpha-1,3-galactose and urticarial or anaphylactic reactions to mammalian meat: The alpha-gal syndrome. Allergy 2024; 79:1440-1454. [PMID: 38193233 PMCID: PMC11142869 DOI: 10.1111/all.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
The recent recognition of a syndrome of tick-acquired mammalian meat allergy has transformed the previously held view that mammalian meat is an uncommon allergen. The syndrome, mediated by IgE antibodies against the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal), can also involve reactions to visceral organs, dairy, gelatin and other products, including medications sourced from non-primate mammals. Thus, fittingly, this allergic disorder is now called the alpha-gal syndrome (AGS). The syndrome is strikingly regional, reflecting the important role of tick bites in sensitization, and is more common in demographic groups at risk of tick exposure. Reactions in AGS are delayed, often by 2-6 h after ingestion of mammalian meat. In addition to classic allergic symptomatology such as urticaria and anaphylaxis, AGS is increasingly recognized as a cause of isolated gastrointestinal morbidity and alpha-gal sensitization has also been linked with cardiovascular disease. The unusual link with tick bites may be explained by the fact that allergic cells and mediators are mobilized to the site of tick bites and play a role in resistance against ticks and tick-borne infections. IgE directed to alpha-gal is likely an incidental consequence of what is otherwise an adaptive immune strategy for host defense against endo- and ectoparasites, including ticks.
Collapse
Affiliation(s)
- Jeffrey M. Wilson
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Loren Erickson
- Department of Microbiology, Immunology, and Cancer Biology and Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | | | - Samuel M. Ailsworth
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Scott P. Commins
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
2
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
3
|
Sharma SR, Choudhary SK, Vorobiov J, Commins SP, Karim S. Tick bite-induced alpha-gal syndrome and immunologic responses in an alpha-gal deficient murine model. Front Immunol 2024; 14:1336883. [PMID: 38390396 PMCID: PMC10882631 DOI: 10.3389/fimmu.2023.1336883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction Alpha-Gal Syndrome (AGS) is a delayed allergic reaction due to specific IgE antibodies targeting galactose-α-1,3-galactose (α-gal), a carbohydrate found in red meat. This condition has gained significant attention globally due to its increasing prevalence, with more than 450,000 cases estimated just in the United States alone. Previous research has established a connection between AGS and tick bites, which sensitize individuals to α-gal antigens and elevate the levels of specific IgE. However, the precise mechanism by which tick bites influence the host's immune system and contribute to the development of AGS remains poorly understood. This study investigates various factors related to ticks and the host associated with the development of AGS following a tick bite, using mice with a targeted disruption of alpha-1,3-galactosyltransferase (AGKO) as a model organism. Methods Lone-star tick (Amblyomma americanum) and gulf-coast tick (Amblyomma maculatum) nymphs were used to sensitize AGKO mice, followed by pork meat challenge. Tick bite site biopsies from sensitized and non-sensitized mice were subjected to mRNA gene expression analysis to assess the host immune response. Antibody responses in sensitized mice were also determined. Results Our results showed a significant increase in the total IgE, IgG1, and α-gal IgG1 antibodies titers in the lone-star tick-sensitized AGKO mice compared to the gulf-coast tick-sensitized mice. Pork challenge in Am. americanum -sensitized mice led to a decline in body temperature after the meat challenge. Gene expression analysis revealed that Am. americanum bites direct mouse immunity toward Th2 and facilitate host sensitization to the α-gal antigen. Conclusion This study supports the hypothesis that specific tick species may increase the risk of developing α-gal-specific IgE and hypersensitivity reactions or AGS, thereby providing opportunities for future research on the mechanistic role of tick and host-related factors in AGS development.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shailesh K. Choudhary
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Julia Vorobiov
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Scott P. Commins
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
4
|
Maldonado-Ruiz LP, Reif KE, Ghosh A, Foré S, Johnson RL, Park Y. High levels of alpha-gal with large variation in the salivary glands of lone star ticks fed on human blood. Sci Rep 2023; 13:21409. [PMID: 38049505 PMCID: PMC10695944 DOI: 10.1038/s41598-023-48437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Tick bites, associated with the secretion of tick saliva containing the xenoglycan galactose-alpha-1, 3-galactose (alpha-gal or aGal), are recognized as the causal factors of alpha-Gal syndrome (AGS; or red meat allergy) in humans. AGS occurs after the increased production of IgE antibodies against aGal, which is found in most mammalian cells, except for the Old World monkey and humans. The aGal sensitization event has been linked to an initial tick bite, followed by consumption of red meat containing the aGal glycan, which triggers the onset of the allergic response resulting in urticaria, anaphylaxis, or even death. In North America, the lone star tick, Amblyomma americanum, has been identified as the main culprit for AGS. However, only a subset of the human population exposed to lone star tick bites develops AGS. This suggests the presence of unidentified variables associated with the sensitization event. To evaluate the quantitative variations of the aGal in ticks, we evaluated the differences in aGal levels in different strains of A. americanum ticks partially fed on different blood sources using an artificial feeding system and animal hosts. We found significantly higher aGal levels in the female ticks fed on human blood than those fed on the blood of other mammals with large variations among different tick populations and individuals. We propose that host-specific genetic components in the A. americanum ticks are involved in the production of high aGal epitope in the tick saliva, which provides a part of the explanation for the variables associated with the AGS sensitization event of the tick bite.
Collapse
Affiliation(s)
| | - Kathryn E Reif
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anuradha Ghosh
- Department of Biology, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Stephanie Foré
- Department of Biology, Truman State University, Kirksville, MO, 63501, USA
| | - Rachel L Johnson
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
5
|
Karim S, Leyva-Castillo JM, Narasimhan S. Tick salivary glycans - a sugar-coated tick bite. Trends Parasitol 2023; 39:1100-1113. [PMID: 37838514 DOI: 10.1016/j.pt.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
Ticks are hematophagous arthropods that transmit disease-causing pathogens worldwide. Tick saliva deposited into the tick-bite site is composed of an array of immunomodulatory proteins that ensure successful feeding and pathogen transmission. These salivary proteins are often glycosylated, and glycosylation is potentially critical for the function of these proteins. Some salivary glycans are linked to the phenomenon of red meat allergy - an allergic response to red meat consumption in humans exposed to certain tick species. Tick salivary glycans are also invoked in the phenomenon of acquired tick resistance wherein non-natural host species exposed to tick bites develop an immune response that thwarts subsequent tick feeding. This review dwells on our current knowledge of these two phenomena, thematically linked by salivary glycans.
Collapse
Affiliation(s)
- Shahid Karim
- University of Southern Mississippi, Hattiesburg, MS, USA
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven-06520, CT, USA.
| |
Collapse
|
6
|
Contreras M, Vaz-Rodrigues R, Mazuecos L, Villar M, Artigas-Jerónimo S, González-García A, Shilova NV, Bovin NV, Díaz-Sánchez S, Ferreras-Colino E, Pacheco I, Chmelař J, Kopáček P, Cabezas-Cruz A, Gortázar C, de la Fuente J. Allergic reactions to tick saliva components in zebrafish model. Parasit Vectors 2023; 16:242. [PMID: 37468955 PMCID: PMC10357745 DOI: 10.1186/s13071-023-05874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, Universidad de Castilla-La Mancha, Ave. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Oparina str. 4, 117198, Moscow, Russian Federation
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russian Federation
- Centre for Kode Technology Innovation, School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Universidad de La Laguna, Entrada Campus Anchieta, 4, 38200, La Laguna, Tenerife, Canary Islands, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czechia
| | - Petr Kopáček
- Institute of ParasitologyBiology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czechia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Macdougall JD, Thomas KO, Iweala OI. The Meat of the Matter: Understanding and Managing Alpha-Gal Syndrome. Immunotargets Ther 2022; 11:37-54. [PMID: 36134173 PMCID: PMC9484563 DOI: 10.2147/itt.s276872] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Alpha-gal syndrome is an unconventional food allergy, characterized by IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal) and not to a food-protein. In this review, we discuss how alpha-gal syndrome reframes our current conception of the mechanisms of pathogenesis of food allergy. The development of alpha-gal IgE is associated with tick bites though the possibility of other parasites promoting sensitization to alpha-gal remains. We review the immune cell populations involved in the sensitization and effector phases of alpha-gal syndrome and describe the current understanding of why allergic responses to ingested alpha-gal can be delayed by several hours. We review the foundation of management in alpha-gal syndrome, namely avoidance, but also discuss the use of antihistamines, mast cell stabilizers, and the emerging role of complementary and alternative therapies, biological products, and oral immunotherapy in the management of this condition. Alpha-gal syndrome influences the safety and tolerability of medications and medical devices containing or derived from mammalian products and impacts quality of life well beyond food choices.
Collapse
Affiliation(s)
- Jessica D Macdougall
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Kevin O Thomas
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Onyinye I Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Vaz-Rodrigues R, Mazuecos L, de la Fuente J. Current and Future Strategies for the Diagnosis and Treatment of the Alpha-Gal Syndrome (AGS). J Asthma Allergy 2022; 15:957-970. [PMID: 35879928 PMCID: PMC9307871 DOI: 10.2147/jaa.s265660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
The α-Gal syndrome (AGS) is a pathognomonic immunoglobulin E (IgE)-mediated delayed anaphylaxis in foods containing the oligosaccharide galactose-α-1,3-galactose (α-Gal) such as mammalian meat or dairy products. Clinical presentation of AGS can also comprise immediate hypersensitivity due to anticancer therapy, gelatin-containing vaccines or mammalian serum-based antivenom. The IgE initial sensitization is caused by hard-bodied tick bites and symptomatic individuals typically develop delayed pruritus, urticaria, angioedema, anaphylaxis, malaise or gut-related symptoms. Due to inapparent presentation, delayed reactions and a wide variety of patients´ clinical history, the AGS diagnosis and treatment remain challenging. This review covers not only current diagnostic methods used for AGS such as the skin prick test (SPT), the oral food challenge (OFC), anti-α-Gal IgE levels measurement and the basophil activation test (BAT), but also potentially relevant next-generation diagnostic tools like the mast cell activation test (MAT), the histamine-release (HR) assay, omics technologies and model-based reasoning (MBR). Moreover, it focuses on the therapeutical medical and non-medical methods available and current research methods that are being applied in order to elucidate the molecular, physiological and immune mechanisms underlying this allergic disorder. Lastly, future treatment and preventive tools are also discussed, being of utmost importance for the identification of tick salivary molecules, with or without α-Gal modifications, that trigger IgE sensitivity as they could be the key for further vaccine development. Bearing in mind climate change, the tick-host paradigm will shift towards an increasing number of AGS cases in new regions worldwide, which will pose new challenges for clinicians in the future.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - Lorena Mazuecos
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
10
|
Maldonado-Ruiz LP, Boorgula GD, Kim D, Fleming SD, Park Y. Tick Intrastadial Feeding and Its Role on IgE Production in the Murine Model of Alpha-gal Syndrome: The Tick "Transmission" Hypothesis. Front Immunol 2022; 13:844262. [PMID: 35309294 PMCID: PMC8930817 DOI: 10.3389/fimmu.2022.844262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have provided strong evidence indicating that lone star tick bites are a cause of AGS (alpha-gal syndrome, also known as red meat allergy RMA) in humans. AGS is characterized by an increase in IgE antibody production against galactose-alpha-1,3-galactose (aGal), which is a common glycan found in mammalian tissue, except in Old World monkeys and humans. The main causative factor of AGS, the lone star tick (Amblyomma americanum), is broadly distributed throughout the east and midwest of the United States and is a vector of a wide range of human and animal pathogens. Our earlier glycomics study of the salivary glands of partially fed male and female ticks revealed relatively high levels of aGal epitopes. In this study, we found that partially fed males of A. americanum on bovine blood, which engage in multiple intrastadial feedings, carry a large amount of aGal in the salivary glands. In our current work, we aimed to test whether ticks mediate the transmission of the aGal sensitizer acquired from nonhuman blood to humans in the intrastadial host switch (referred to as the "transmission" hypothesis). To test this hypothesis, we used an alpha-galactosyltransferase knockout mutant mouse (aGT-KO) model system infested with ticks that were unfed or partially fed on bovine blood. Based on the levels of total IgE and specific IgG and IgE antibodies against aGal after tick feedings, aGT-KO mice significantly responded to tick feeding and injection of aGal (Galα1-3Galβ1-4GlcNAc) conjugated to human serum albumin or mouse serum albumin (aGal-HSA or aGal-MSA) by increasing total IgE and aGal-specific IgE levels compared to those in C57BL/6 control mice. All of the treatments of aGT-KO mice involving the feeding of partially fed and unfed ticks functioned as sensitizers that increased the levels of specific IgE against aGal, with large individual variations. The data in this study do not support the "transmission" component of AGS, although they confirmed that aGT-KO mice can be used as a model for RMA studies.
Collapse
Affiliation(s)
| | | | - Donghun Kim
- Department of Entomology, Kyungpook National University, Daegu, South Korea
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
11
|
The Quantification of IgG Specific to α-Gal Could Be Used as a Risk Marker for Suffering Mammalian Meat Allergy. Foods 2022; 11:foods11030466. [PMID: 35159615 PMCID: PMC8834152 DOI: 10.3390/foods11030466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/14/2023] Open
Abstract
The alpha-Gal Syndrome is a delayed meat allergy characterized by the presence of sIgE against α-Gal epitope. It is known that the α-Gal present in tick saliva induces the sensitization to this epitope ending in the production of sIgG and sIgE to α-Gal. It could be considered that the more times a person is bitten by tick species, the higher the probability of making the switch from sIgG to sIgE to α-Gal and developing allergy, but it is no clear when the switch occurs. To determine the likelihood that a subject bitten by ticks but without AGS be at risk of developing this allergy, we quantified the levels of sIgG to α-Gal by an automated system (ImmunoCap). To stablish a cut-off value for sIgG to α-Gal, a receiving operating curve (ROC) was constructed. The statistical analysis demonstrated that the risk of suffering AGS in individuals bitten by ticks was 35% when the sIgG to α-Gal was greater than or equal to 40 µg/mL. Our data indicate that the sIgG values against α-Gal could be used as a prognostic marker for developing mammalian meat allergy.
Collapse
|
12
|
Carson AS, Gardner A, Iweala OI. Where's the Beef? Understanding Allergic Responses to Red Meat in Alpha-Gal Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:267-277. [PMID: 35017216 PMCID: PMC8928418 DOI: 10.4049/jimmunol.2100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023]
Abstract
Alpha-gal syndrome (AGS) describes a collection of symptoms associated with IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal). Individuals with AGS develop delayed hypersensitivity reactions, with symptoms occurring >2 h after consuming mammalian ("red") meat and other mammal-derived food products. The mechanisms of pathogenesis driving this paradigm-breaking food allergy are not fully understood. We review the role of tick bites in the development of alpha-gal-specific IgE and highlight innate and adaptive immune cells possibly involved in alpha-gal sensitization. We discuss the impact of alpha-gal glycosylation on digestion and metabolism of alpha-gal glycolipids and glycoproteins, and the implications for basophil and mast cell activation and mediator release that generate allergic symptoms in AGS.
Collapse
Affiliation(s)
- Audrey S. Carson
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aliyah Gardner
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Olajiga OM, Maldonado-Ruiz LP, Fatehi S, Cardenas JC, Gonzalez MU, Gutierrez-Silva LY, Londono-Renteria B, Park Y. Association of dengue infection with anti-alpha-gal antibodies, IgM, IgG, IgG1, and IgG2. Front Immunol 2022; 13:1021016. [PMID: 36311743 PMCID: PMC9614307 DOI: 10.3389/fimmu.2022.1021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) transmitted by the Aedes mosquitoes is the etiological agent of dengue fever, one of the fastest-growing reemerging mosquito-borne diseases on the planet with a 30-fold surge in the last five decades. Interestingly, many arthropod-borne pathogens, including DENV type 2, have been reported to contain an immunogenic glycan galactose-alpha1,3-galactose (alpha-Gal or aGal). The aGal molecule is a common oligosaccharide found in many microorganisms and in most mammals, except for humans and the Old-World primates. The loss of aGal in humans is considered to be an evolutionary innovation for enabling the production of specific antibodies against aGal that could be presented on the glycan of pathogens. The objective of this study was to evaluate different anti-aGal antibodies (IgM, IgG, IgG1, and IgG2) in people exposed to DENV. We observed a significant difference in anti-aGal IgG and IgG1 levels among dengue severity classifications. Furthermore, a significant positive correlation was observed between the anti-aGal IgG and the number of days with dengue symptoms in patients. Additionally, both anti-aGal IgM and IgG levels differ between the two geographical locations of patients. While the anti-aGal IgM and IgG2 levels were not significantly different according to the dengue severity levels, age was negatively correlated with anti-aGal IgM and positively correlated with anti-aGal IgG2. Significant involvement of aGal antibodies in Dengue infection processes is suggested based on the results. Our results open the need for further studies on the exact roles and the mechanisms of the aGal antibodies in Dengue infection.
Collapse
Affiliation(s)
- Olayinka M. Olajiga
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jenny C. Cardenas
- Laboratorio Clínico, Hospital Local Los Patios, Los Patios, Norte de Santander, Colombia
| | - Maria U. Gonzalez
- Laboratorio Clinico, Empresa Social Del Estado Hospital Emiro Quintero Cañizares, Ocaña, Norte de Santander, Colombia
| | | | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- *Correspondence: Yoonseong Park, ; Berlin Londono-Renteria,
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Yoonseong Park, ; Berlin Londono-Renteria,
| |
Collapse
|
14
|
Bernal M, Huecker M, Shreffler J, Mittel O, Mittel J, Soliman N. Successful Treatment for Alpha Gal Mammal Product Allergy Using Auricular Acupuncture: A Case Series. Med Acupunct 2021; 33:343-348. [PMID: 35003502 DOI: 10.1089/acu.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Alpha gal syndrome (AGS) is an acquired allergy to mammalian products correlates with a tick bite(s) that appears to cause immune sensitization to an oligosaccharide in meat. Most publications on AGS describe no management other than avoidance of the offending agent(s). The objective of this study is to describe 2 populations of subjects who underwent Soliman Auricular Allergy Treatment (SAAT) for significant AGS meat and/or dairy allergy. Methods: We performed a retrospective review of subjects treated at 2 different medical clinics that apply the same method of auricular acupuncture (SAAT) to AGS patients. Results: A total of 137 patients presented to the 2 sites included in this study. The majority of patients were mammal product eaters before AGS; however, at the time of treatment only 7.3% of individuals (n = 10) actively consumed mammal products. Most subjects were reactive to beef (n = 135) and dairy (n = 95). The most common organ system involved in prior allergic reactions associated with AGS were gastrointestinal (n = 82, 59.9%) and dermatologic (n = 61, 44.5%). For those individuals with available outcome data on SAAT effectiveness (n = 126), 121 (96%) patients indicated that their symptoms were in remission after SAAT. Five individuals indicated that their symptoms were not in remission. Eleven individuals were unsure of treatment response or unable to be reached for follow-up. Conclusion: The SAAT method showed effectiveness in the large majority of patients. No adverse reactions were noted as a result of auricular acupuncture. This alternative medicine approach to AGS management should be further studied in prospective trials with laboratory confirmation both before and after the procedure. This low-risk treatment shows promise in treating a medical condition that causes distress in an increasing number of patients.
Collapse
Affiliation(s)
- Mateo Bernal
- Louisville Community Supported Acupuncture, Louisville, KY, USA
| | - Martin Huecker
- Department of Emergency Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jacob Shreffler
- Department of Emergency Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Olivia Mittel
- Pediatrics, Medical Student Affairs, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph Mittel
- Arizona Asthma and Allergy Institute, Scottsdale, AZ, USA
| | | |
Collapse
|
15
|
Popescu FD, Ganea CS, Panaitescu C, Vieru M. Molecular diagnosis in cat allergy. World J Methodol 2021; 11:46-60. [PMID: 34026578 PMCID: PMC8127422 DOI: 10.5662/wjm.v11.i3.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Domestic cats represent one of the most common sources of indoor allergens. All over the world, many households own cats, whose allergens are persistent and widespread. Cat allergy itself is frequent, and its symptoms vary from rhinoconjunctivitis to life-threatening asthma. In vitro diagnosis using precision medicine allergy immunoassays is important because natural cat dander extracts may differ in quality and quantity of some of the individual allergen components and other molecules. In the component-resolved diagnosis of cat allergy, singleplex and multiplex specific immunoglobulin (Ig) E assays include use of the cat-specific major allergen, secretoglobin Fel d 1 (as a species-specific molecule), other allergen components (such as lipocalins Fel d 4, cross-reacting with other animal similar molecules, and Fel d 7, present in small quantities in natural extracts), and serum albumin Fel d 2 (related to the cat-pork syndrome). IgA Fel d 5 and IgM Fel d 6 are not available as allergen components in the current commercial IgE immunoassays, but they may impair the in vitro diagnostic evaluation of cat allergy because galactose-α1,3-galactose is an IgE-binding epitope of these native feline allergens. The benefits of molecular-based cat allergy diagnosis are continually evaluated, as the role of recombinant allergen components already known is detailed and new other molecules of interest may be discovered in the future.
Collapse
Affiliation(s)
- Florin-Dan Popescu
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
- Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest 022441, Romania
| | - Carmen Saviana Ganea
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
| | - Carmen Panaitescu
- Department III Functional Sciences, Physiology Discipline, “Victor Babes” University of Medicine and Pharmacy, Timișoara 300041, Romania
- Center for Gene and Cell Therapies in Cancer Treatment OncoGen-SCJUPB Timisoara, Timișoara 300041, Romania
| | - Mariana Vieru
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
- Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest 022441, Romania
| |
Collapse
|
16
|
Maldonado-Ruiz LP, Neupane S, Park Y, Zurek L. The bacterial community of the lone star tick (Amblyomma americanum). Parasit Vectors 2021; 14:49. [PMID: 33446262 PMCID: PMC7807426 DOI: 10.1186/s13071-020-04550-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The lone star tick (Amblyomma americanum), an important vector of a wide range of human and animal pathogens, is very common throughout the East and Midwest of the USA. Ticks are known to carry non-pathogenic bacteria that may play a role in their vector competence for pathogens. Several previous studies using the high throughput sequencing (HTS) technologies reported the commensal bacteria in a tick midgut as abundant and diverse. In contrast, in our preliminary survey of the field collected adult lone star ticks, we found the number of culturable/viable bacteria very low. METHODS We aimed to analyze the bacterial community of A. americanum by a parallel culture-dependent and a culture-independent approach applied to individual ticks. RESULTS We analyzed 94 adult females collected in eastern Kansas and found that 60.8% of ticks had no culturable bacteria and the remaining ticks carried only 67.7 ± 42.8 colony-forming units (CFUs)/tick representing 26 genera. HTS of the 16S rRNA gene resulted in a total of 32 operational taxonomic units (OTUs) with the dominant endosymbiotic genera Coxiella and Rickettsia (> 95%). Remaining OTUs with very low abundance were typical soil bacterial taxa indicating their environmental origin. CONCLUSIONS No correlation was found between the CFU abundance and the relative abundance from the culture-independent approach. This suggests that many culturable taxa detected by HTS but not by culture-dependent method were not viable or were not in their culturable state. Overall, our HTS results show that the midgut bacterial community of A. americanum is very poor without a core microbiome and the majority of bacteria are endosymbiotic.
Collapse
Affiliation(s)
| | - Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Ludek Zurek
- Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic.
| |
Collapse
|
17
|
Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, de la Fuente J, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines (Basel) 2020; 8:E702. [PMID: 33233316 PMCID: PMC7711837 DOI: 10.3390/vaccines8040702] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
The tick microbiota is a highly complex ensemble of interacting microorganisms. Keystone taxa, with a central role in the microbial networks, support the stability and fitness of the microbial communities. The keystoneness of taxa in the tick microbiota can be inferred from microbial co-occurrence networks. Microbes with high centrality indexes are highly connected with other taxa of the microbiota and are expected to provide important resources to the microbial community and/or the tick. We reasoned that disturbance of vector microbiota by removal of ubiquitous and abundant keystone bacteria may disrupt the tick-microbiota homeostasis causing harm to the tick host. These observations and reasoning prompted us to test the hypothesis that antibodies targeting keystone bacteria may harm the ticks during feeding on immunized hosts. To this aim, in silico analyses were conducted to identify keystone bacteria in the microbiota of Ixodes nymphs. The family Enterobacteriaceae was among the top keystone taxa identified in Ixodes microbiota. Immunization of α-1,3-galactosyltransferase-deficient-C57BL/6 (α1,3GT KO) mice with a live vaccine containing the Enterobacteriaceae bacterium Escherichia coli strain BL21 revealed that the production of anti-E. coli and anti-α-Gal IgM and IgG was associated with high mortality of I. ricinus nymphs during feeding. However, this effect was absent in two different strains of wild type mice, BALB/c and C57BL/6. This result concurred with a wide distribution of α-1,3-galactosyltransferase genes, and possibly α-Gal, in Enterobacteriaceae and other bacteria of tick microbiota. Interestingly, the weight of I. ricinus nymphs that fed on E. coli-immunized C57BL/6 was significantly higher than the weight of ticks that fed on C57BL/6 immunized with a mock vaccine. Our results suggest that anti-tick microbiota vaccines are a promising tool for the experimental manipulation of vector microbiota, and potentially the control of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13400-970, Brazil
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - Jeremie Borneres
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - Nicolas Versille
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria;
| | - Ladislav Šimo
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| |
Collapse
|
18
|
Hils M, Wölbing F, Hilger C, Fischer J, Hoffard N, Biedermann T. The History of Carbohydrates in Type I Allergy. Front Immunol 2020; 11:586924. [PMID: 33163001 PMCID: PMC7583601 DOI: 10.3389/fimmu.2020.586924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although first described decades ago, the relevance of carbohydrate specific antibodies as mediators of type I allergy had not been recognized until recently. Previously, allergen specific IgE antibodies binding to carbohydrate epitopes were considered to demonstrate a clinically irrelevant cross-reactivity. However, this changed following the discovery of type I allergies specifically mediated by oligosaccharide structures. Especially the emerging understanding of red meat allergy characterized by IgE directed to the oligosaccharide alpha-gal showed that carbohydrate-mediated reactions can result in life threatening systemic anaphylaxis which in contrast to former assumptions proves a high clinical relevance of some carbohydrate allergens. Within the scope of this review article, we illustrate the historical development of carbohydrate-allergen-research, reaching from only diagnostically relevant crossreactive-carbohydrate-determinants to clinically important antigens mediating type I allergy. Focusing on clinical and immunological features of the alpha-gal syndrome, we highlight the discovery of oligosaccharides as potentially highly immunogenic antigens and mediators of type I allergy, report what is known about the route of sensitization and the immunological mechanisms involved in sensitization and elicitation phase of allergic responses as well as currently available diagnostic and therapeutic tools. Finally, we briefly report on carbohydrates being involved in type I allergies different from alpha-gal.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
- Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental 10 Health GmbH, Neuherberg, Germany
| |
Collapse
|
19
|
Lee HK, Ha DI, Kang JG, Park GW, Lee JY, Cho K, Bin Moon S, Shin JH, Kim YS, An HJ, Kim JY, Yoo JS, Ko JH. Selective Identification of α-Galactosyl Epitopes in N-Glycoproteins Using Characteristic Fragment Ions from Higher-Energy Collisional Dissociation. Anal Chem 2020; 92:13144-13154. [PMID: 32902264 DOI: 10.1021/acs.analchem.0c02276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The α-galactosyl epitope is a terminal N-glycan moiety of glycoproteins found in mammals except in humans, and thus, it is recognized as an antigen that provokes an immunogenic response in humans. Accordingly, it is necessary to analyze the α-galactosyl structure in biopharmaceuticals or organ transplants. Due to an identical glycan composition and molecular mass between α-galactosyl N-glycans and hybrid/high-mannose-type N-glycans, it is challenging to characterize α-galactosyl epitopes in N-glycoproteins using mass spectrometry. Here, we describe a method to identify α-galactosyl N-glycopeptides in mice glycoproteins using liquid chromatography with tandem mass spectrometry with higher-energy collisional dissociation (HCD). The first measure was an absence of [YHM] ion peaks in the HCD spectra, which was exclusively observed in hybrid and/or high-mannose-type N-glycopeptides. The second complementary criterion was the ratio of an m/z 528.19 (Hex2HexNAc1) ion to m/z 366.14 (Hex1HexNAc1) ion (Im/z528/Im/z366). The measure of [Im/z528/Im/z366 > 0.3] enabled a clear-cut determination of α-galactosyl N-glycopeptides with high accuracy. In Ggta1 knockout mice, we could not find any α-galactosyl N-glycoproteins identified in WT mice plasma. Using this method, we could screen for α-galactosyl N-glycoproteins from mice spleen, lungs, and plasma samples in a highly sensitive and specific manner. Conclusively, we suggest that this method will provide a robust analytical tool for determination of α-galactosyl epitopes in pharmaceuticals and complex biological samples.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dae-In Ha
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Jeong Gu Kang
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Gun Wook Park
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Kun Cho
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Su Bin Moon
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Jong Hwan Shin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Hyun Joo An
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang-eup, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, 125 Gwahak-ro, Daejeon 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| |
Collapse
|
20
|
Hodžić A, Mateos-Hernández L, de la Fuente J, Cabezas-Cruz A. α-Gal-Based Vaccines: Advances, Opportunities, and Perspectives. Trends Parasitol 2020; 36:992-1001. [PMID: 32948455 DOI: 10.1016/j.pt.2020.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Humans and crown catarrhines evolved with the inability to synthesize the oligosaccharide galactose-α-1,3-galactose (α-Gal). In turn, they naturally produce high quantities of the glycan-specific antibodies that can be protective against infectious agents exhibiting the same carbohydrate modification on their surface coat. The protective immunity induced by α-Gal is ensured through an antibody-mediated adaptive and cell-mediated innate immune response. Therefore, the α-Gal antigen represents an attractive and feasible target for developing glycan-based vaccines against multiple diseases. In this review article we provide an insight into our current understanding of the mechanisms involved in the protective immunity to α-Gal and discuss the possibilities and challenges in developing a single-antigen pan-vaccine for prevention and control of parasitic diseases of medical and veterinary concern.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France.
| |
Collapse
|
21
|
Chandrasekhar JL, Cox KM, Erickson LD. B Cell Responses in the Development of Mammalian Meat Allergy. Front Immunol 2020; 11:1532. [PMID: 32765532 PMCID: PMC7379154 DOI: 10.3389/fimmu.2020.01532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Studies of meat allergic patients have shown that eating meat poses a serious acute health risk that can induce severe cutaneous, gastrointestinal, and respiratory reactions. Allergic reactions in affected individuals following meat consumption are mediated predominantly by IgE antibodies specific for galactose-α-1,3-galactose (α-gal), a blood group antigen of non-primate mammals and therefore present in dietary meat. α-gal is also found within certain tick species and tick bites are strongly linked to meat allergy. Thus, it is thought that exposure to tick bites promotes cutaneous sensitization to tick antigens such as α-gal, leading to the development of IgE-mediated meat allergy. The underlying immune mechanisms by which skin exposure to ticks leads to the production of α-gal-specific IgE are poorly understood and are key to identifying novel treatments for this disease. In this review, we summarize the evidence of cutaneous exposure to tick bites and the development of mammalian meat allergy. We then provide recent insights into the role of B cells in IgE production in human patients with mammalian meat allergy and in a novel mouse model of meat allergy. Finally, we discuss existing data more generally focused on tick-mediated immunomodulation, and highlight possible mechanisms for how cutaneous exposure to tick bites might affect B cell responses in the skin and gut that contribute to loss of oral tolerance.
Collapse
Affiliation(s)
- Jessica L Chandrasekhar
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kelly M Cox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Loren D Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
22
|
Fischer J, Riel S, Fehrenbacher B, Frank A, Schaller M, Biedermann T, Hilger C, Mackenstedt U. Spatial distribution of alpha-gal in Ixodes ricinus - A histological study. Ticks Tick Borne Dis 2020; 11:101506. [PMID: 32723636 DOI: 10.1016/j.ttbdis.2020.101506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Alpha-gal syndrome is a complex allergic disease in humans that is caused by specific IgE (sIgE) against the carbohydrate galactose-α-1,3-galactose (alpha-gal). Tick saliva contains alpha-gal, and tick bites are considered a major cause of the induction of alpha-gal-sIgE. The origin of alpha-gal in tick saliva remains unclarified. The presence of alpha-gal in tick tissue was visualized in this study to provide an overview of the spatial distribution of alpha-gal and to further elucidate the origin of alpha-gal in tick saliva. Fed and unfed Ixodes ricinus females were examined by histology, immunohistochemistry, immunofluorescence, transmission electron microscopy and immunoelectron microscopy using the alpha-gal-specific monoclonal antibody M86 and Marasmius oreades agglutinin (MOA) lectin. Alpha-gal epitopes were detected in the midgut, hemolymph and salivary glands, and the immunofluorescence analysis revealed signs of the endocytosis of alpha-gal-containing constituents during the process of hematophagy. Alpha-gal epitopes in endosomes of the digestive gut cells of the ticks were observed via immunoelectron microscopy. Alpha-gal epitopes were detected in dried droplets of hemolymph from unfed ticks. Intense staining of alpha-gal epitopes was found in type II granular acini of the salivary glands of fed and unfed ticks. Our data suggest that alpha-gal is not ubiquitously expressed in tick tissue but is present in both fed and unfed ticks. The findings also indicate that both the metabolic incorporation of constituents from a mammalian blood meal and endogenous production contribute to the presence of alpha-gal epitopes in ticks.
Collapse
Affiliation(s)
- Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Simon Riel
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alisa Frank
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technische Universität, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ute Mackenstedt
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Mateos-Hernández L, Risco-Castillo V, Torres-Maravilla E, Bermúdez-Humarán LG, Alberdi P, Hodžić A, Hernández-Jarguin A, Rakotobe S, Galon C, Devillers E, de la Fuente J, Guillot J, Cabezas-Cruz A. Gut Microbiota Abrogates Anti-α-Gal IgA Response in Lungs and Protects against Experimental Aspergillus Infection in Poultry. Vaccines (Basel) 2020; 8:vaccines8020285. [PMID: 32517302 PMCID: PMC7350254 DOI: 10.3390/vaccines8020285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring human antibodies (Abs) of the isotypes IgM and IgG and reactive to the galactose-α-1,3-galactose (α-Gal) epitope are associated with protection against infectious diseases, caused by pathogens expressing the glycan. Gut microbiota bacteria expressing α-Gal regulate the immune response to this glycan in animals lacking endogenous α-Gal. Here, we asked whether the production of anti-α-Gal Abs in response to microbiota stimulation in birds, confers protection against infection by Aspergillus fumigatus, a major fungal pathogen that expresses α-Gal in its surface. We demonstrated that the oral administration of Escherichia coli O86:B7 strain, a bacterium with high α-Gal content, reduces the occurrence of granulomas in lungs and protects turkeys from developing acute aspergillosis. Surprisingly, the protective effect of E. coli O86:B7 was not associated with an increase in circulating anti-α-Gal IgY levels, but with a striking reduction of anti-α-Gal IgA in the lungs of infected turkeys. Subcutaneous immunization against α-Gal did not induce a significant reduction of lung anti-α-Gal IgA and failed to protect against an infectious challenge with A. fumigatus. Oral administration of E. coli O86:B7 was not associated with the upregulation of lung cytokines upon A. fumigatus infection. We concluded that the oral administration of bacteria expressing high levels of α-Gal decreases the levels of lung anti-α-Gal IgA, which are mediators of inflammation and lung damage during acute aspergillosis.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Veronica Risco-Castillo
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (V.R.-C.); (J.G.)
| | - Edgar Torres-Maravilla
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.T.-M.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.T.-M.); (L.G.B.-H.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Angelica Hernández-Jarguin
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Tamaulipas 87000, Mexico
| | - Sabine Rakotobe
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Clemence Galon
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Elodie Devillers
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Jose de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jacques Guillot
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (V.R.-C.); (J.G.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
- Correspondence: ; Tel.: +33-1-49-774-677
| |
Collapse
|
24
|
Wilson JM, Keshavarz B, Retterer M, Workman LJ, Schuyler AJ, McGowan EC, Lane C, Kandeel A, Purser J, Rönmark E, LaRussa J, Commins SP, Merritt T, Platts-Mills TAE. A dynamic relationship between two regional causes of IgE-mediated anaphylaxis: α-Gal syndrome and imported fire ant. J Allergy Clin Immunol 2020; 147:643-652.e7. [PMID: 32522461 DOI: 10.1016/j.jaci.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND A syndrome of mammalian meat allergy relating to IgE specific for galactose-α-1,3-galactose (α-Gal) was first reported 10 years ago in the southeastern United States and has been related to bites of the lone star tick (Amblyomma americanum). OBJECTIVE Here we investigated the epidemiology of the "α-Gal syndrome" in the United States and sought additional evidence for the connection to tick bites. METHODS A survey of allergists was conducted by using a snowball approach. A second tier of the survey included questions about anaphylaxis to imported fire ants (IFAs). History of tick bites and tick-related febrile illness were assessed as part of a case-control study in Virginia. Antibody assays were conducted on sera from subjects reporting allergic reactions to mammalian meat or IFA. RESULTS In North America the α-Gal syndrome is recognized across the Southeast, Midwest, and Atlantic Coast, with many providers in this area managing more than 100 patients each. The distribution of cases generally conformed to the reported range of A americanum, although within this range there was an inverse relationship between α-Gal cases and cases of IFA anaphylaxis that were closely related to the territory of IFA. The connection between tick bites and α-Gal sensitization was further supported by patients' responses to a questionnaire and the results of serologic tests. CONCLUSIONS The α-Gal syndrome is commonly acquired in adulthood as a consequence of tick bites and has a regional distribution that largely conforms to the territory of the lone star tick. The epidemiology of the syndrome is expected to be dynamic and shifting north because of climate change and ecologic competition from IFA.
Collapse
Affiliation(s)
- Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Behnam Keshavarz
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Maya Retterer
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Lisa J Workman
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Alexander J Schuyler
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Emily C McGowan
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | | | | | | | - Eva Rönmark
- Department of Public Health and Clinical Medicine, OLIN Unit, Umeå University, Umeå, Sweden
| | | | - Scott P Commins
- Division of Rheumatology, Allergy & Immunology, University of North Carolina, Chapel Hill, NC
| | - Tina Merritt
- The Allergy and Asthma Clinic of Northwest Arkansas, Bentonville, Ark
| | | |
Collapse
|
25
|
Contreras M, Pacheco I, Alberdi P, Díaz-Sánchez S, Artigas-Jerónimo S, Mateos-Hernández L, Villar M, Cabezas-Cruz A, de la Fuente J. Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Front Cell Infect Microbiol 2020; 10:78. [PMID: 32211341 PMCID: PMC7075944 DOI: 10.3389/fcimb.2020.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks are arthropod ectoparasite vectors of pathogens and the cause of allergic reactions affecting human health worldwide. In humans, tick bites can induce high levels of immunoglobulin E antibodies against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate anaphylactic reactions known as the alpha-Gal syndrome (AGS) or red meat allergy. In this study, a new animal model was developed using zebrafish for the study of allergic reactions and the immune mechanisms in response to tick salivary biogenic substances and red meat consumption. The results showed allergic hemorrhagic anaphylactic-type reactions and abnormal behavior patterns likely in response to tick salivary toxic and anticoagulant biogenic compounds different from α-Gal. However, the results showed that only zebrafish previously exposed to tick saliva developed allergic reactions to red meat consumption with rapid desensitization and tolerance. These allergic reactions were associated with tissue-specific Toll-like receptor-mediated responses in types 1 and 2 T helper cells (TH1 and TH2) with a possible role for basophils in response to tick saliva. These results support previously proposed immune mechanisms triggering the AGS and provided evidence for new mechanisms also potentially involved in the AGS. These results support the use of the zebrafish animal model for the study of the AGS and other tick-borne allergies.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
26
|
Platts-Mills TAE, Commins SP, Biedermann T, van Hage M, Levin M, Beck LA, Diuk-Wasser M, Jappe U, Apostolovic D, Minnicozzi M, Plaut M, Wilson JM. On the cause and consequences of IgE to galactose-α-1,3-galactose: A report from the National Institute of Allergy and Infectious Diseases Workshop on Understanding IgE-Mediated Mammalian Meat Allergy. J Allergy Clin Immunol 2020; 145:1061-1071. [PMID: 32057766 DOI: 10.1016/j.jaci.2020.01.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The mammalian meat allergy known as the "α-Gal syndrome" relates to IgE specific for galactose-α-1,3-galactose (α-Gal), an oligosaccharide that is present in cells and tissues of nonprimate mammals. The recognition of delayed reactions to food derived from mammals in patients with IgE to α-Gal and also the association with tick bites have been increasing worldwide. In 2018, the National Institute of Allergy and Infectious Diseases, Division of Allergy, Immunology and Transplantation, sponsored a workshop on this emerging tick-related disease. International experts from the fields of tick biology, allergy, immunology, infectious disease, and dermatology discussed the current state of our understanding of this emerging medical condition. The participants provided suggestions for specific research priorities and for the development of resources to advance our knowledge of the mechanisms, diagnosis, management, and prevention of this allergic disease. This publication is a summary of the workshop and the panel's recommendations are presented herein.
Collapse
Affiliation(s)
| | - Scott P Commins
- Departments of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich and Unit Clinical Allergology (EKA), Helmholtz Zentrum München, Munich, Germany
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Michael Levin
- Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Airway Research, Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Michael Minnicozzi
- Division of Allergy, Immunology and Transplantation, Allergy, Asthma and Airway Biology Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Md
| | - Marshall Plaut
- Division of Allergy, Immunology and Transplantation, Allergy, Asthma and Airway Biology Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Md
| | - Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| |
Collapse
|