1
|
Saichuer P, Khrisanapant P, Senapin S, Rattanarojpong T, Somsoros W, Khunrae P, Sangsuriya P. Evaluate the potential use of TonB-dependent receptor protein as a subunit vaccine against Aeromonas veronii infection in Nile tilapia (Oreochromis niloticus). Protein Expr Purif 2024; 215:106412. [PMID: 38104792 DOI: 10.1016/j.pep.2023.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A. veronii, which plays a role in the virulence factor of the organism, could be useful in terms of protective antigens for vaccine development. This study aims to evaluate the potential use of Tdr protein as a novel subunit vaccine against A. veronii infection in Nile tilapia. The Tdr gene from A. veronii was cloned into the pET28b expression vector, and the recombinant protein was subsequently produced in Escherichia coli strain BL21 (DE3). Tdr was expressed as an insoluble protein and purified by affinity chromatography. Antigenicity test indicated that this protein was recognized by serum from A. veronii infected fish. When Nile tilapia were immunized with the Tdr protein, specific antibody levels increased significantly (p-value <0.05) at 7 days post-immunization (dpi), and peaked at 21 dpi compared to antibody levels at 0 dpi. Furthermore, bacterial agglutination activity was observed in the fish serum immunized with the Tdr protein, indicating that specific antibodies in the serum can detect Tdr on the bacterial cell surface. These results suggest that Tdr protein has potential as a vaccine candidate. However, challenging tests with A.veronii in Nile tilapia needs to be investigated to thoroughly evaluate its protective efficacy for future applications.
Collapse
Affiliation(s)
- Pornpavee Saichuer
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Prit Khrisanapant
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Wasusit Somsoros
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand.
| |
Collapse
|
2
|
Thompson KD, Rodkhum C, Bunnoy A, Thangsunan P, Kitiyodom S, Sukkarun P, Yostawornkul J, Yata T, Pirarat N. Addressing Nanovaccine Strategies for Tilapia. Vaccines (Basel) 2023; 11:1356. [PMID: 37631924 PMCID: PMC10459980 DOI: 10.3390/vaccines11081356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023] Open
Abstract
Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.
Collapse
Affiliation(s)
- Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 90000, Thailand;
| | - Jakarwan Yostawornkul
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| |
Collapse
|
3
|
Gong YM, Wei XF, Zheng YY, Li Y, Yu Q, Li PF, Zhu B. Combining Phage Display Technology with In Silico-Designed Epitope Vaccine to Elicit Robust Antibody Responses against Emerging Pathogen Tilapia Lake Virus. J Virol 2023; 97:e0005023. [PMID: 36975794 PMCID: PMC10134809 DOI: 10.1128/jvi.00050-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.
Collapse
Affiliation(s)
- Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
5
|
Tattiyapong P, Kitiyodom S, Yata T, Jantharadej K, Adamek M, Surachetpong W. Chitosan nanoparticle immersion vaccine offers protection against tilapia lake virus in laboratory and field studies. FISH & SHELLFISH IMMUNOLOGY 2022; 131:972-979. [PMID: 36351543 DOI: 10.1016/j.fsi.2022.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Tilapia lake virus (TiLV), an enveloped negative-sense single-stranded RNA virus, causes tilapia lake virus disease (TiLVD), which is associated with mass mortality and severe economic impacts in wild and farmed tilapia industries worldwide. In this study, we developed a chitosan nanoparticle TiLV immersion vaccine and assessed the efficacy of the vaccine in laboratory and field trials. Transmission electron microscopy showed that the inactivated vaccine had a particle size of 210.3 nm, while the nano inactivated vaccine had a spherical shape with a diameter of 120.4 nm. Further analysis using fluorescent staining and immunohistochemistry analysis revealed the mucoadhesive properties of the nanovaccine (CN-KV) through fish gills. We assessed the efficacy of an immersion-based TiLV nanovaccine using a cohabitation challenge model. The fish that received the nanovaccine showed better relative percent survival (RPS) at 68.17% compared with the RPS of the inactivated virus vaccine (KV) group at 25.01%. The CN-KV group also showed a higher TiLV-specific antibody response than the control and KV groups (p < 0.05). Importantly, under field conditions, the fish receiving the CN-KV nanovaccine had better RPS at 52.2% than the nonvaccinated control group. Taken together, the CN-KV nanovaccinated fish showed better survival and antibody response than the control and KV groups both under laboratory control challenge conditions and field trials. The newly developed immersion-based nanovaccine is easy to administer in small fish, is less labor-intensive, and allows for mass vaccination to protect fish from TiLV infection.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Sirikorn Kitiyodom
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Teerapong Yata
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Krittayapong Jantharadej
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Win Surachetpong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand.
| |
Collapse
|
6
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Editorial of Special Issue “The 2nd Edition: Vaccines for Aquaculture”. Vaccines (Basel) 2022; 10:vaccines10081242. [PMID: 36016130 PMCID: PMC9413199 DOI: 10.3390/vaccines10081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
|
8
|
Yang YF, Yamkasem J, Surachetpong W, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Liao CM. Assessing the effect of probiotics on tilapia lake virus-infected tilapia: Transmission and immune response. JOURNAL OF FISH DISEASES 2022; 45:1117-1132. [PMID: 35514291 DOI: 10.1111/jfd.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Probiotics have been used to alleviate disease transmission in aquaculture. However, there are limited studies on probiotic use in modulating tilapia lake virus (TiLV). We assessed commercially available probiotic supplements used in TiLV-infected tilapia and performed mortality and cohabitation assays. We developed a mechanistic approach to predict dose-response interactions of probiotic effects on mortality and immune gene response. We used a susceptible-infected-mortality disease model to assess key epidemiological parameters such as transmission rate and basic reproduction number (R0 ) based on our viral load dynamic data. We found that the most marked benefits of probiotics are significantly associated with immune system enhancements (~30%) and reductions in disease transmission (~80%) and R0 (~70%) in tilapia populations, resulting in a higher tolerance of farming densities (~400 fold) in aquaculture. These findings provide early insights as to how probiotic use-related factors may influence TiLV transmission and the immune responses in TiLV-infected tilapia. Our study facilitates understanding the mode of action of probiotics in disease containment and predicting better probiotic dosages in diet and supplements to achieve the optimal culturing conditions. Overall, our analysis assures that further study of rationally designed and targeted probiotics, or mechanistic modelling is warranted on the basis of promising early data of this approach.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Jidapa Yamkasem
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Win Surachetpong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, Taiwan
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Chamtim P, Suwan E, Dong HT, Sirisuay S, Areechon N, Wangkahart E, Hirono I, Mavichak R, Unajak S. Combining segments 9 and 10 in DNA and recombinant protein vaccines conferred superior protection against tilapia lake virus in hybrid red tilapia ( oreochromis sp.) compared to single segment vaccines. Front Immunol 2022; 13:935480. [PMID: 35958595 PMCID: PMC9359061 DOI: 10.3389/fimmu.2022.935480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Tilapia lake virus (TiLV) now affects Nile tilapia culture worldwide, with no available commercial vaccine for disease prevention. DNA and recombinant protein-based vaccines were developed and tested following viral isolation and characterization. The viral strain isolated from diseased hybrid red tilapia (Oreochromis sp.) shared high levels of morphological and genomic similarity (95.49-99.52%) with other TiLV isolates in the GenBank database. TiLV segment 9 (Tis9) and segment 10 (Tis10) DNA vaccines (pcDNA-Tis9 and pcDNA-Tis10) and recombinant protein vaccines (Tis9 and Tis10) were prepared and tested for their efficacy in juvenile hybrid red tilapia. Fish were immunized with either single vaccines (pcDNA-Tis9, pcDNA-Tis10, Tis9 and Tis10) or combined vaccines (pcDNA-Tis9 + pcDNA-Tis10 and Tis9 + Tis10) by intramuscular injection and intraperitoneal injection for DNA and protein vaccines, respectively. Negative controls were injected with PBS or a naked pcDNA3.1 vector in the same manner. An experimental challenge with TiLV was carried out at 4 weeks post-vaccination (wpv) by intraperitoneal injection with a dose of 1 × 105 TCID50 per fish. Relative percent survival (RPS) ranged from 16.67 ± 00.00 to 61.11 ± 9.62%. The Tis10 and pcDNA-Tis10 vaccines conferred better protection compared to Tis9 and pcDNA-Tis9. Highest levels of protection were observed in pcDNA-Tis9 + pcDNA-Tis10 (61.11 ± 9.62%) and Tis9 + Tis10 (55.56 ± 9.62%) groups. Specific antibody was detected in all vaccinated groups at 1-4 wpv by Dot Blot method, with the highest integrated density at 2 and 3 wpv. In silico analysis of Tis9 and Tis10 revealed a number of B-cell epitopes in their coil structure, possibly reflecting their immunogenicity. Findings suggested that the combination of Tis9 and Tis10 in DNA and recombinant protein vaccine showed high efficacy for the prevention of TiLV disease in hybrid red tilapia.
Collapse
Affiliation(s)
- Pitakthai Chamtim
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Eukote Suwan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management Program, Department of Food, Agriculture and Bioresources (AARM/FAB), School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Soranuth Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Eakapol Wangkahart
- Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Rapeepat Mavichak
- Molecular Biology Research Department, Charoen Pokphand Foods Public Co., Ltd., Aquatic Animal Health Research Center, Samut Sakhon, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
10
|
Adamek M, Rebl A, Matras M, Lodder C, Abd El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:118-133. [PMID: 35367372 DOI: 10.1016/j.fsi.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Christian Lodder
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202, Elche, Spain
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Mondal H, Chandrasekaran N, Mukherjee A, Thomas J. Viral infections in cultured fish and shrimps: current status and treatment methods. AQUACULTURE INTERNATIONAL 2022; 30:227-262. [DOI: 10.1007/s10499-021-00795-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2023]
|
12
|
Mai TT, Kayansamruaj P, Soontara C, Kerddee P, Nguyen DH, Senapin S, Costa JZ, del-Pozo J, Thompson KD, Rodkhum C, Dong HT. Immunization of Nile Tilapia ( Oreochromis niloticus) Broodstock with Tilapia Lake Virus (TiLV) Inactivated Vaccines Elicits Protective Antibody and Passive Maternal Antibody Transfer. Vaccines (Basel) 2022; 10:167. [PMID: 35214626 PMCID: PMC8879158 DOI: 10.3390/vaccines10020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tilapia lake virus (TiLV), a major pathogen of farmed tilapia, is known to be vertically transmitted. Here, we hypothesize that Nile tilapia (Oreochromis niloticus) broodstock immunized with a TiLV inactivated vaccine can mount a protective antibody response and passively transfer maternal antibodies to their fertilized eggs and larvae. To test this hypothesis, three groups of tilapia broodstock, each containing four males and eight females, were immunized with either a heat-killed TiLV vaccine (HKV), a formalin-killed TiLV vaccine (FKV) (both administered at 3.6 × 106 TCID50 per fish), or with L15 medium. Booster vaccination with the same vaccines was given 3 weeks later, and mating took place 1 week thereafter. Broodstock blood sera, fertilized eggs and larvae were collected from 6-14 weeks post-primary vaccination for measurement of TiLV-specific antibody (anti-TiLV IgM) levels. In parallel, passive immunization using sera from the immunized female broodstock was administered to naïve tilapia juveniles to assess if antibodies induced in immunized broodstock were protective. The results showed that anti-TiLV IgM was produced in the majority of both male and female broodstock vaccinated with either the HKV or FKV and that these antibodies could be detected in the fertilized eggs and larvae from vaccinated broodstock. Higher levels of maternal antibody were observed in fertilized eggs from broodstock vaccinated with HKV than those vaccinated with FKV. Low levels of TiLV-IgM were detected in some of the 1-3 day old larvae but were undetectable in 7-14 day old larvae from the vaccinated broodstock, indicating a short persistence of TiLV-IgM in larvae. Moreover, passive immunization proved that antibodies elicited by TiLV vaccination were able to confer 85% to 90% protection against TiLV challenge in naïve juvenile tilapia. In conclusion, immunization of tilapia broodstock with TiLV vaccines could be a potential strategy for the prevention of TiLV in tilapia fertilized eggs and larvae, with HKV appearing to be more promising than FKV for maternal vaccination.
Collapse
Affiliation(s)
- Thao Thu Mai
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Chayanit Soontara
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Pattarawit Kerddee
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Dinh-Hung Nguyen
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng 12120, Thailand
| | - Janina Z. Costa
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Jorge del-Pozo
- Infection and Immunity Division, Roslin Institute, Edinburgh EH25 9RG, UK;
| | - Kim D. Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Program, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng 12120, Thailand
| |
Collapse
|
13
|
Challenges in Veterinary Vaccine Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:3-34. [PMID: 34816396 DOI: 10.1007/978-1-0716-1888-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animals provide food and clothing in addition to other value-added products. Changes in diet and lifestyle have increased the consumption and the use of animal products. Infectious diseases in animals are a major threat to global animal health and its welfare; their effective control is crucial for agronomic health, for safeguarding food security and also alleviating rural poverty. Development of vaccines has led to increased production of healthy poultry, livestock, and fish. Animal production increases have alleviated food insecurity. In addition, development of effective vaccines has led to healthier companion animals. However, challenges remain including climate change that has led to enhancement in vectors and pathogens that may lead to emergent diseases in animals. Preventing transmission of emerging infectious diseases at the animal-human interface is critically important for protecting the world population from epizootics and pandemics. Hence, there is a need to develop new vaccines to prevent diseases in animals. This review describes the broad challenges to be considered in the development of vaccines for animals.
Collapse
|
14
|
Lertwanakarn T, Trongwongsa P, Yingsakmongkol S, Khemthong M, Tattiyapong P, Surachetpong W. Antiviral Activity of Ribavirin against Tilapia tilapinevirus in Fish Cells. Pathogens 2021; 10:1616. [PMID: 34959571 PMCID: PMC8705004 DOI: 10.3390/pathogens10121616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The outbreak of the novel Tilapia tilapinevirus or Tilapia lake virus (TiLV) is having a severe economic impact on global tilapia aquaculture. Effective treatments and vaccines for TiLV are lacking. In this study, we demonstrated the antiviral activity of ribavirin against TiLV in E-11 cells. Our findings revealed that at concentrations above 100 μg/mL, ribavirin efficiently attenuates the cytopathic effect of the TiLV infection in fish cells. When administered in a dose-dependent manner, ribavirin significantly improved cell survival compared to the untreated control cells. Further investigation revealed that the cells exposed to ribavirin and TiLV had a lower viral load (p < 0.05) than the untreated cells. However, at concentrations above 1000 μg/mL, ribavirin led to cell toxicity. Taken together, our results demonstrate the efficacy of this antiviral drug against TiLV and could be a useful tool for future research on the pathogenesis and replication mechanism of TiLV as well as other piscine viruses.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Sangchai Yingsakmongkol
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
15
|
Falco A, Bello-Perez M, Díaz-Puertas R, Mold M, Adamek M. Update on the Inactivation Procedures for the Vaccine Development Prospects of a New Highly Virulent RGNNV Isolate. Vaccines (Basel) 2021; 9:vaccines9121441. [PMID: 34960187 PMCID: PMC8705346 DOI: 10.3390/vaccines9121441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Viral nervous necrosis (VNN) caused by the nervous necrosis virus (NNV) affects a broad range of primarily marine fish species, with mass mortality rates often seen among larvae and juveniles. Its genetic diversification may hinder the effective implementation of preventive measures such as vaccines. The present study describes different inactivation procedures for developing an inactivated vaccine against a new NNV isolate confirmed to possess deadly effects upon the European seabass (Dicentrarchus labrax), an important Mediterranean farmed fish species that is highly susceptible to this disease. First, an NNV isolate from seabass adults diagnosed with VNN was rescued and the sequences of its two genome segments (RNA1 and RNA2) were classified into the red-spotted grouper NNV (RGNNV) genotype, closely clustering to the highly pathogenic 283.2009 isolate. The testing of different inactivation procedures revealed that the virus particles of this isolate showed a marked resistance to heat (for at least 60 °C for 120 min with and without 1% BSA) but that they were fully inactivated by 3 mJ/cm2 UV-C irradiation and 24 h 0.2% formalin treatment, which stood out as promising NNV-inactivation procedures for potential vaccine candidates. Therefore, these procedures are feasible, effective, and rapid response strategies for VNN control in aquaculture.
Collapse
Affiliation(s)
- Alberto Falco
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain; (M.B.-P.); (R.D.-P.)
- Correspondence:
| | - Melissa Bello-Perez
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain; (M.B.-P.); (R.D.-P.)
| | - Rocío Díaz-Puertas
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain; (M.B.-P.); (R.D.-P.)
| | - Matthew Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK;
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany;
| |
Collapse
|
16
|
Mai TT, Kayansamruaj P, Taengphu S, Senapin S, Costa JZ, del‐Pozo J, Thompson KD, Rodkhum C, Dong HT. Efficacy of heat-killed and formalin-killed vaccines against Tilapia tilapinevirus in juvenile Nile tilapia (Oreochromis niloticus). JOURNAL OF FISH DISEASES 2021; 44:2097-2109. [PMID: 34477227 PMCID: PMC9291230 DOI: 10.1111/jfd.13523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 06/02/2023]
Abstract
Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is considered to be a new threat to the global tilapia industry. The objective of this study was to develop simple cell culture-based heat-killed (HKV) and formalin-killed (FKV) vaccines for the prevention of disease caused by TiLV. The fish were immunized with 100 µl of either HKV or FKV by intraperitoneal injection with each vaccine containing 1.8 × 106 TCID50- inactivated virus. A booster vaccination was carried out at 21-day post-vaccination (dpv) using the same protocol. The fish were then challenged with a lethal dose of TiLV at 28 dpv. The expression of five immune genes (IgM, IgD, IgT, CD4 and CD8) in the head kidney and spleen of experimental fish was assessed at 14 and 21 dpv and again after the booster vaccination at 28 dpv. TiLV-specific IgM responses were measured by ELISA at the same time points. The results showed that both vaccines conferred significant protection, with relative percentage survival of 71.3% and 79.6% for HKV and FKV, respectively. Significant up-regulation of IgM and IgT was observed in the head kidney of fish vaccinated with HKV at 21 dpv, while IgM, IgD and CD4 expression increased in the head kidney of fish receiving FKV at the same time point. After booster vaccination, IgT and CD8 transcripts were significantly increased in the spleen of fish vaccinated with the HKV, but not with FKV. Both vaccines induced a specific IgM response in both serum and mucus. In summary, this study showed that both HKV and FKV are promising injectable vaccines for the prevention of disease caused by TiLV in Nile tilapia.
Collapse
Affiliation(s)
- Thao Thu Mai
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- The International Graduate Program of Veterinary Science and Technology (VST)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Division of Aquacultural BiotechnologyBiotechnology Center of Ho Chi Minh CityHo Chi MinhVietnam
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health ManagementFaculty of FisheriesKasetsart UniversityBangkokThailand
| | - Suwimon Taengphu
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Saengchan Senapin
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Janina Z. Costa
- Aquaculture Research GroupMoredun Research InstituteEdinburghUK
| | - Jorge del‐Pozo
- Infection and Immunity DivisionRoslin InstituteEdinburghUK
| | - Kim D. Thompson
- Aquaculture Research GroupMoredun Research InstituteEdinburghUK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- The International Graduate Program of Veterinary Science and Technology (VST)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Ha Thanh Dong
- Faculty of Science and TechnologySuan Sunandha Rajabhat UniversityBangkokThailand
- Department of Food, Agriculture and BioresourcesSchool of Environment, Resources and DevelopmentAsian Institute of TechnologyPathum ThaniThailand
| |
Collapse
|