1
|
Dahiya P, Bisht MK, Mukhopadhyay S. Role of PE family of proteins in mycobacterial virulence: Potential on anti-TB vaccine and drug design. Int Rev Immunol 2025:1-16. [PMID: 39889764 DOI: 10.1080/08830185.2025.2455161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
Macrophages are the primary targets of mycobacterial infection, which plays crucial roles both in nonspecific defence (innate immunity) as well as specific defence mechanisms (adaptive immunity) by secreting various cytokines, antimicrobial mediators and presenting antigens to T-cells. Sequencing of the mycobacterial genome revealed that 10% of its coding ability is devoted to the Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins. While the function of most of the genes belonging to the PE-PPE family initially remained unannotated, recent studies have shown that many proteins of this family play critical roles in bacterial growth and cell functions, and manipulation of host immune responses, indicating their potential roles in mycobacterial virulence. In this review, we have focussed on describing the immunological importance of particularly the PE group of proteins in the context of 'virulence' determinants and outcome of tuberculosis disease. Additionally, we have discussed about the roles of these proteins on host-pathogen-interaction and how some of these genes can be targeted which may help us in designing effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Laboratory of Molecular Cell Biology, BRIC-Center for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Manoj Kumar Bisht
- Laboratory of Molecular Cell Biology, BRIC-Center for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, BRIC-Center for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Guo F, Wei J, Song Y, Li B, Qian Z, Wang X, Wang H, Xu T. Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines. Front Immunol 2023; 14:1255920. [PMID: 37841250 PMCID: PMC10569470 DOI: 10.3389/fimmu.2023.1255920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines.
Collapse
Affiliation(s)
- Fangzheng Guo
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Jing Wei
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Yamin Song
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical College, Bengbu, China
| |
Collapse
|
3
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Meeting report: 6th Global Forum on Tuberculosis Vaccines, 22–25 February 2022, Toulouse, France. Vaccine X 2023. [DOI: 10.1016/j.jvacx.2023.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
Arif S, Akhter M, Khaliq A, Akhtar MW. Fusion peptide constructs from antigens of M. tuberculosis producing high T-cell mediated immune response. PLoS One 2022; 17:e0271126. [PMID: 36174012 PMCID: PMC9521936 DOI: 10.1371/journal.pone.0271126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Non availability of effective anti-TB vaccine impedes TB control which remains a crucial global health issue. A fusion molecule based on immunogenic antigens specific to different growth phases of Mycobacterium tuberculosis can enhance T-cell responses required for developing a potent vaccine. In this study, six antigens including EspC, TB10.4, HspX, PPE57, CFP21 and Rv1352 were selected for constructing EspC-TB10.4 (bifu25), TnCFP21-Rv1352 (bifu29), HspX-EspC-TB10.4 (trifu37), HspX-TnCFP21-Rv1352 (trifu44) and HspX-EspC-TB10.4-PPE57 (tetrafu56) fusion proteins. Th1-cell epitopes of EspC, PPE57 and Rv1352 antigens were predicted for the first time using different in silico tools. The fusion molecule tetrafu56, which consisted of antigens from both the replicating and the dormant stages of Mtb, induced a release of 397 pg/mL of IFN-γ from PBMCs of the active TB patients. This response was comparable to the response obtained with cocktail of the component antigens (396 pg/mL) as well as to the total of the responses obtained separately for each of its component antigens (388 pg/mL). However, PBMCs from healthy samples in response to tetrafu56 showed IFN-γ release of only 26.0 pg/mL Thus a previous exposure of PBMCs to Mtb antigens in TB plasma samples resulted in 15-fold increase in IFN-γ response to tetrafu56 as compared to the PBMCs from the healthy controls. Hence, most of the T-cell epitopes of the individual antigens seem to be available for T-cell interactions in the form of the fusion. Further investigation in animal models should substantiate the immune efficacy of the fusion molecule. Thus, the fusion tetrafu56 seems to be a potential candidate for developing an effective multistage vaccine against TB.
Collapse
Affiliation(s)
- Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | |
Collapse
|
6
|
Sulman S, Savidge BO, Alqaseer K, Das MK, Nezam Abadi N, Pearl JE, Turapov O, Mukamolova GV, Akhtar MW, Cooper AM. Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines (Basel) 2021; 9:vaccines9050519. [PMID: 34070048 PMCID: PMC8158147 DOI: 10.3390/vaccines9050519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis vaccines capable of reducing disease worldwide have proven difficult to develop. BCG is effective in limiting childhood disease, but adult TB is still a major public health issue. Development of new vaccines requires identification of antigens that are both spatially and temporally available throughout infection, and immune responses to which reduce bacterial burden without increasing pathologic outcomes. Subunit vaccines containing antigen require adjuvants to drive appropriate long-lived responses. We generated a triple-antigen fusion containing the virulence-associated EsxN (Rv1793), the PPE42 (Rv2608), and the latency associated Rv2628 to investigate the balance between bacterial reduction and weight loss in an animal model of aerosol infection. We found that in both a low pattern recognition receptor (PRR) engaging adjuvant and a high PRR-engaging adjuvant (MPL/TDM/DDA) the triple-antigen fusion could reduce the bacterial burden, but also induced weight loss in the mice upon aerosol infection. The weight loss was associated with an imbalance between TNFα and IL-17 transcription in the lung upon challenge. These data indicate the need to assess both protective and pathogenic responses when investigating subunit vaccine activity.
Collapse
Affiliation(s)
- Sadaf Sulman
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Benjamin O. Savidge
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Kawther Alqaseer
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
- Department of Basic Science, Faculty of Nursing, University of Kufa, P.O. Box 21, Kufa, Najaf Governorate, Najaf 540011, Iraq
| | - Mrinal K. Das
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Neda Nezam Abadi
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - John E. Pearl
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Obolbek Turapov
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Galina V. Mukamolova
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - M. Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Andrea May Cooper
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
- Correspondence: ; Tel.: +44-(0)116-252-2957; Fax: +44-(0)116-252-5030
| |
Collapse
|