1
|
Sokolovska L, Isaguliants M, Buonaguro FM. Proceedings of the Online Conference "Vaccines and Vaccination during and Post COVID Pandemics" (7-9 December 2022). Vaccines (Basel) 2023; 11:1175. [PMID: 37514990 PMCID: PMC10383049 DOI: 10.3390/vaccines11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic put focus on various aspects of vaccine research and development. These include mass vaccination strategies, vaccination compliance and hesitancy, acceptance of novel vaccine approaches, preclinical and animal models used to assess vaccine safety and efficacy, and many other related issues. These issues were addressed by the international online conference "Vaccines and Vaccination During and Post COVID Pandemics" (VAC&VAC 2022) held on the platform of Riga Stradins University, Riga, Latvia. Conference was supported by the International Society for Vaccines, the National Cancer Institute "Fondazione Pascale" (Naples, Italy), and the scientific journal VACCINES (mdpi). VAC&VAC 2022 attracted nearly 150 participants from 14 countries. This report summarizes conference presentations and their discussion. Sessions covered the topics of (1) COVID-19 vaccine development, evaluation, and attitude towards these vaccines, (2) HPV and cancer vaccines, (3) progress and challenges of HIV vaccine development, (4) new and re-emerging infectious threats, and (5) novel vaccine vehicles, adjuvants, and carriers. Each session was introduced by a plenary lecture from renowned experts from leading research institutions worldwide. The conference also included sessions on research funding and grant writing and an early career researcher contest in which the winners received monetary awards and a chance to publish their results free of charge in the special issue of VACCINES covering the meeting.
Collapse
Affiliation(s)
- Liba Sokolovska
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Maria Isaguliants
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Franco M Buonaguro
- Experimental Oncology Department, National Cancer Institute 'Fondazione Pascale', 80131 Naples, Italy
| |
Collapse
|
2
|
Marušić M, Kopitar AN, Korva M, Knap N, Bogovič P, Strle F, Ihan A, Avšič-Županc T. Dendritic cell activation and cytokine response in vaccine breakthrough TBE patients after in vitro stimulation with TBEV. Front Immunol 2023; 14:1190803. [PMID: 37261350 PMCID: PMC10228714 DOI: 10.3389/fimmu.2023.1190803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral infection of the human central nervous system caused by the TBE virus (TBEV). The most effective protective measure against TBE is vaccination. Despite the highly immunogenic vaccine, cases of vaccine breakthroughs (VBTs) occur. One of the first targets of infection is dendritic cells (DC), which represent a fundamental bridge between innate and adaptive immunity through antigen presentation, costimulation, and cytokine production. Therefore, we investigated the activation and maturation of DCs and cytokine production after in vitro TBEV stimulation of peripheral blood mononuclear cells (PBMCs) obtained from VBT and unvaccinated TBE patients. Our results showed that the expression of HLA-DR and CD86 on DCs, was upregulated to a similar extent in both vaccinated and unvaccinated TBE patients but differed in cytokine production after stimulation with TBEV. PBMCs from patients with VBT TBE responded with lower levels of IFN-α and the proinflammatory cytokines IL-12 (p70) and IL-15 after 24- and 48-hour in vitro stimulation with TBEV, possibly facilitating viral replication and influencing the development of cell-mediated immunity. On the other hand, significantly higher levels of IL-6 in addition to an observed trend of higher expression of TNF-α measured after 6 days of in vitro stimulation of PBMC could support disruption of the blood-brain barrier and promote viral and immune cell influx into the CNS, leading to more severe disease in VBT TBE patients.
Collapse
Affiliation(s)
- Miša Marušić
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Laboratory for Cellular Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Laboratory for Cellular Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Novak A, Pennings JLA, van der Maas L, Meiring HD, Ludwig I, Verkoeijen S, Rutten V, Broere F, Sloots A. Transcriptome and proteome analysis of innate immune responses to inactivated Leptospira and bivalent Leptospira vaccines in canine 030-D cells. Sci Rep 2022; 12:13418. [PMID: 35927283 PMCID: PMC9352656 DOI: 10.1038/s41598-022-16457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Mandatory potency testing of Leptospira vaccine batches relies partially on in vivo procedures, requiring large numbers of laboratory animals. Cell-based assays could replace in vivo tests for vaccine quality control if biomarkers indicative of Leptospira vaccine potency are identified. We investigated innate immune responsiveness induced by inactivated L. interrogans serogroups Canicola and Icterohaemorrhagiae, and two bivalent, non-adjuvanted canine Leptospira vaccines containing the same serogroups. First, the transcriptome and proteome analysis of a canine monocyte/macrophage 030-D cell line stimulated with Leptospira strains, and vaccine B revealed more than 900 DEGs and 23 DEPs in common to these three stimuli. Second, comparison of responses induced by vaccine B and vaccine D revealed a large overlap in DEGs and DEPs as well, suggesting potential to identify biomarkers indicative of Leptospira vaccine quality. Because not many common DEPs were identified, we selected seven molecules from the identified DEGs, associated with pathways related to innate immunity, of which CXCL-10, IL-1β, SAA, and complement C3 showed increased secretion upon stimulation with both Leptospira vaccines. These molecules could be interesting targets for development of biomarker-based assays for Leptospira vaccine quality control in the future. Additionally, this study contributes to the understanding of the mechanisms by which Leptospira vaccines induce innate immune responses in the dog.
Collapse
Affiliation(s)
- Andreja Novak
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Intravacc, Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Irene Ludwig
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saertje Verkoeijen
- Research Centre Healthy and Sustainable Living, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Victor Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Internal Medicine of Companion Animals, Department of Clinical Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|