1
|
Wei M, Liang S, Wang Y, Hu J, Pang F. Design and assessment of two broad-spectrum multi-epitope vaccine candidates against bovine viral diarrhea virus based on the E0 or E2 envelope glycoprotein. Vet J 2024; 309:106296. [PMID: 39725021 DOI: 10.1016/j.tvjl.2024.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 09/26/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Bovine viral diarrhea virus (BVDV) is a significant pathogen that exerts substantial economic influence on the global cattle industry. Developing a safe and effective novel vaccine targeting various BVDV subtypes is critical for controlling BVDV infection. In the study, we created two distinct multi-epitope vaccines by linking highly conserved and dominant cytotoxic T-lymphocytes (CTL), helper T-lymphocytes (HTL), and B-cell epitopes from either the E0 or E2 envelope glycoprotein of diverse BVDV subtypes. To enhance immunogenicity, β-defensin-3 was fused to the N-terminus of these constructs as an adjuvant. Using multiple immunoinformatics tools, we conducted an analysis and assessment of the vaccine constructs' physicochemical properties and immunological features. Consequently, two prospective vaccine candidates named BVDV-M1 and BVDV-M2 were successfully designed and shown to be stable, antigenic, non-allergenic, and non-toxic. The optimized vaccine 3D models exhibit excellent structural quality. Molecular docking revealed a strong interaction between the vaccines with bovine TLR2 and TLR4. The stability of the docked vaccine-TLR complexes was confirmed through molecular dynamics simulation. Immune simulation analyses indicated that both vaccines have the potential to induce high levels of antibodies IgM, IgG and the cytokines IFN-γ and IL-2. Furthermore, the vaccine's efficient expression in the E.coli system was secured through codon optimization coupled with in silico cloning. Summarily, the designed multi-epitope vaccines have the potential to elicit robust humoral and cellular immune responses, positioning them as hopeful broad-spectrum vaccine candidates against the currently prevalent BVDV subtypes.
Collapse
Affiliation(s)
- Min Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Yuting Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Jingjin Hu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Shah M, Rafiq S, Woo HG. Challenges and considerations in multi-epitope vaccine design surrounding toll-like receptors. Trends Pharmacol Sci 2024; 45:1104-1118. [PMID: 39603961 DOI: 10.1016/j.tips.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Epitope-based peptide vaccines elicit targeted immune responses, making them effective for diseases requiring focused immune activation, such as targeting cancer-associated antigens. Strategies like peptide cocktails and mRNA-based epitope vaccines have revolutionized the field; however, the term 'multi-epitope peptide vaccine' has been overextended, especially concerning the use of toll-like receptors (TLRs), their ligands, and peptide linkers. TLRs are often conflated with T cell receptors (TCRs) and B cell receptors (BCRs), which recognize immunogenic peptides within vaccines. This Opinion clarifies the role of TLRs and highlights challenges linked to their indiscriminate use in multi-epitope vaccine design. While peptide linkers are crucial in creating multivalent vaccines, their unsupervised application is increasing and warrants attention. After highlighting their role in advancing peptide vaccines, we discuss critical factors in linker implementation and caution against their misuse, which could undermine vaccines' efficacy.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sobia Rafiq
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyun G Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea; Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Oladipo EK, Ojo TO, Elegbeleye OE, Bolaji OQ, Oyewole MP, Ogunlana AT, Olalekan EO, Abiodun B, Adediran DA, Obideyi OA, Olufemi SE, Salamatullah AM, Bourhia M, Younous YA, Adelusi TI. Exploring the nuclear proteins, viral capsid protein, and early antigen protein using immunoinformatic and molecular modeling approaches to design a vaccine candidate against Epstein Barr virus. Sci Rep 2024; 14:16798. [PMID: 39039173 PMCID: PMC11263613 DOI: 10.1038/s41598-024-66828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
The available Epstein Barr virus vaccine has tirelessly harnessed the gp350 glycoprotein as its target epitope, but the result has not been preventive. Right here, we designed a global multi-epitope vaccine for EBV; with special attention to making sure all strains and preventive antigens are covered. Using a robust computational vaccine design approach, our proposed vaccine is armed with 6-16 mers linear B-cell epitopes, 4-9 mer CTL epitopes, and 8-15 mer HTL epitopes which are verified to induce interleukin 4, 10 & IFN-gamma. We employed deep computational mining coupled with expert intelligence in designing the vaccine, using human Beta defensin-3-which has been reported to induce the same TLRs as EBV-as the adjuvant. The tendency of the vaccine to cause autoimmune disorder is quenched by the assurance that the construct contains no EBNA-1 homolog. The protein vaccine construct exhibited excellent physicochemical attributes such as Aliphatic index 59.55 and GRAVY - 0.710; and a ProsaWeb Z score of - 3.04. Further computational analysis revealed the vaccine docked favorably with EBV indicted TLR 1, 2, 4 & 9 with satisfactory interaction patterns. With global coverage of 85.75% and the stable molecular dynamics result obtained for the best two interactions, we are optimistic that our nontoxic, non-allergenic multi-epitope vaccine will help to ameliorate the EBV-associated diseases-which include various malignancies, tumors, and cancers-preventively.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, 232104, Nigeria
| | - Taiwo Ooreoluwa Ojo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Olawale Quadri Bolaji
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Moyosoluwa Precious Oyewole
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - Abdeen Tunde Ogunlana
- Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Emmanuel Obanijesu Olalekan
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Bamidele Abiodun
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Daniel Adewole Adediran
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | | | - Seun Elijah Olufemi
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | | - Temitope Isaac Adelusi
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria.
- Department of Surgery, School of Medicine, University of Connecticut Health, Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Abid A, Alzahrani B, Naz S, Basheer A, Bakhtiar SM, Al-Asmari F, Jamal SB, Faheem M. Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii. BIOLOGY 2024; 13:510. [PMID: 39056703 PMCID: PMC11274250 DOI: 10.3390/biology13070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Streptococcus gordonii is a gram-positive, mutualistic bacterium found in the human body. It is found in the oral cavity, upper respiratory tract, and intestines, and presents a serious clinical problem because it can lead to opportunistic infections in individuals with weakened immune systems. Streptococci are the most prevalent inhabitants of oral microbial communities, and are typical oral commensals found in the human oral cavity. These streptococci, along with many other oral microbes, produce multispecies biofilms that can attach to salivary pellicle components and other oral bacteria via adhesin proteins expressed on the cell surface. Antibiotics are effective against this bacterium, but resistance against antibodies is increasing. Therefore, a more effective treatment is needed. Vaccines offer a promising method for preventing this issue. This study generated a multi-epitope vaccine against Streptococcus gordonii by targeting the completely sequenced proteomes of five strains. The vaccine targets are identified using a pangenome and subtractive proteomic approach. In the present study, 13 complete strains out of 91 strains of S. gordonii are selected. The pangenomics results revealed that out of 2835 pan genes, 1225 are core genes. Out of these 1225 core genes, 643 identified as non-homologous proteins by subtractive proteomics. A total of 20 essential proteins are predicted from non-homologous proteins. Among these 20 essential proteins, only five are identified as surface proteins. The vaccine construct is designed based on selected B- and T-cell epitopes of the antigenic proteins with the help of linkers and adjuvants. The designed vaccine is docked against TLR2. The expression of the protein is determined using in silico gene cloning. Findings concluded that Vaccine I with adjuvant shows higher interactions with TLR2, suggesting that the vaccine has the ability to induce a humoral and cell-mediated response to treat and prevent infection; this makes it promising as a vaccine against infectious diseases caused by S. gordonii. Furthermore, validation of the vaccine construct is required by in vitro and in vivo trials to check its actual potency and safety for use to prevent infectious diseases caused by S. gordonii.
Collapse
Affiliation(s)
- Aneeqa Abid
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (S.M.B.)
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (S.N.); (A.B.)
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (S.N.); (A.B.)
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (S.M.B.)
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; (S.N.); (A.B.)
| | - Muhammad Faheem
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
5
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
6
|
Beikzadeh B. Immunoinformatics design of novel multi-epitope vaccine against Trueperella Pyogenes using collagen adhesion protein, fimbriae, and pyolysin. Arch Microbiol 2024; 206:90. [PMID: 38315222 DOI: 10.1007/s00203-023-03814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen that causes infertility, mastitis, and metritis in animals. T. pyogenes is also a zoonotic disease and is considered an economic loss agent in the livestock industry. Therefore, vaccine development is necessary. Using an immunoinformatics approach, this study aimed to construct a multi-epitope vaccine against T. pyogenes. The collagen adhesion protein, fimbriae, and pyolysin (PLO) sequences were initially retrieved. The HTL, CTL, and B cell epitopes were predicted. The vaccine was designed by binding these epitopes with linkers. To increase vaccine immunogenicity, profilin was added to the N-terminal of the vaccine construct. The antigenic features and safety of the vaccine model were investigated. Docking, molecular dynamics simulation of the vaccine with immune receptors, and immunological simulation were used to evaluate the vaccine's efficacy. The vaccine's sequence was then optimized for cloning. The vaccine construct was designed based on 18 epitopes of T. pyogenes. The computational tools validated the vaccine as non-allergenic, non-toxic, hydrophilic, and stable at different temperatures with acceptable antigenic features. The vaccine model had good affinity and stability to bovine TLR2, 4, and 5 as well as stimulation of IgM, IgG, IL-2, IFN-γ, and Th1 responses. This vaccine also increased long-lived memory cells, dendritic cells, and macrophage population. In addition, codon optimization was done and cloned in the E. coli K12 expression vector (pET-28a). For the first time, this study introduced a novel multi-epitope vaccine candidate based on collagen adhesion protein, fimbriae, and PLO of T. pyogenes. It is expected this vaccine stimulates an effective immune response to prevent T. pyogenes infection.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
7
|
Roja B, Chellapandi P. Design and characterization of a multi-epitope vaccine against Clostridium botulinum A3 Loch Maree intoxication in humans. Gene 2024; 892:147865. [PMID: 37783297 DOI: 10.1016/j.gene.2023.147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Clostridium botulinum Loch Maree expresses an extremely potent botulinum neurotoxin subtype, A3 causing botulism and several gastrointestinal disorders in mammals. Several recombinant vaccines have been developed for human botulism and no vaccine is currently available for the treatment of diseases caused by other virulence factors. Hence, we designed, constructed, and characterized a multi-epitope vaccine from new virulence proteins identified from this organism using an immunoinformatics approach. The vaccine construct used in this study was designed from 6B cell linear epitopes, 12 cytotoxic T cell lymphocyte epitopes, and 15 helper T cell lymphocyte epitopes, with a defensin adjuvant and adjusting linker sequences. A molecular modeling approach was used to model, refine, and validate the 3D structure of the vaccine construct. Molecular docking studies were performed to determine the stability of the molecular interactions between the vaccine construct and human toll-like receptor 7. The in silico molecular cloning was used to clone a codon-optimized synthetic vaccine gene in pCYB1 vector and expressed in Escherichia coli. The results of this study identified six new virulence proteins: peptidoglycan hydrolase, SCP-like extracellular protein, N-acetylmuramoyl-l-alanine amidase, putative membrane protein, drug/metabolite exporter, and bacillolysin. The top B-cell, cytotoxic T-cell lymphocyte, and helper T-lymphocyte epitopes were predicted from these virulence proteins with greater accuracy and reliability. HLA-A*02:01 and HLA-A*03:01 were identified as HLA-A-binding alleles for cytotoxic T-cell lymphocyte epitopes. DRB1*0110 and DRB1*0115 are the dominant alleles that bind to helper T-cell lymphocyte epitopes. The synthetic gene construct was highly expressed in a heterologous host and produced considerable amounts of antigenic protein. The multi-epitope vaccine is more conservative in the sequence-structure-function link, immunogenic with less allergenicity, and possibly provokes cellular and humoral immunity. The present study suggests that the designed multi-epitope vaccine is a promising prophylactic candidate for the virulence and intoxication caused by subtype A3 strains.
Collapse
Affiliation(s)
- B Roja
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
8
|
Pluta A, Taxis TM, van der Meer F, Shrestha S, Qualley D, Coussens P, Rola-Łuszczak M, Ryło A, Sakhawat A, Mamanova S, Kuźmak J. An immunoinformatics study reveals a new BoLA-DR-restricted CD4+ T cell epitopes on the Gag protein of bovine leukemia virus. Sci Rep 2023; 13:22356. [PMID: 38102157 PMCID: PMC10724172 DOI: 10.1038/s41598-023-48899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland.
| | - Tasia Marie Taxis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sulav Shrestha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA, 30149, USA
| | - Paul Coussens
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Anna Ryło
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Ali Sakhawat
- Animal Quarantine Department, Ministry of National Food Security and Research, Peshawar, 25000, Pakistan
| | - Saltanat Mamanova
- Laboratory of Virology, Kazakh Scientific Research Veterinary Institute, LLP, 223 Raiymbek Avenue, 050000, Almaty, Republic of Kazakhstan
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100, Puławy, Poland
| |
Collapse
|
9
|
Rani S, Mamathashree MN, Bharthi I U, Patil SS, Krishnamoorthy P, Shueb M, Pandey RK, Suresh KP. Comprehensive examination on codon usage bias pattern of the Bovine Ephemeral fever virus. J Biomol Struct Dyn 2023; 42:10593-10603. [PMID: 37705249 DOI: 10.1080/07391102.2023.2258220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Bovine Ephemeral Fever Virus (BEFV) is a non-contagious virus that commonly infects cattle and water buffalo, reduces milk productivity, decreases the quality of beef, and causes an adverse economic impact on the global livestock industry. However, the evolution of BEFV is unclear, and uncertainty exists regarding its global geodynamics. Consequently, this study aims to comprehend the pattern of viral evolution and gene expression in the BEFV genes G, M, N, and P, including synonymous codons. Additionally, we performed recombination analyses, which exclusively detected recombination signals in the G- and P-genes. Subsequently, a phylogenetic tree was constructed to validate and support these findings. The codon usage bias results showed that the BEFV-selected genes were influenced by both natural and mutation pressure. Furthermore, nucleotide A is more abundant in all the selected genes. The eNC values, ranging from 42.99 to 47.10, revealed the presence of moderate codon usage bias, where gene P exhibited the highest and gene G had the lowest codon usage bias. The neutrality and PR-2 plots, specified codon usage patterns of the genes, are also being shaped by strong selectional pressure. This comprehensive analysis of BEFV genes (G, M, N, and P) sheds light on the molecular evolutionary patterns, co-adaptation, and different genes expression in diverse regions, facilitating the development of preventative programs and insights into viral pathogenesis and vaccine design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Swati Rani
- Disease Informatics, Spatial Epidemiology Lab, ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - M N Mamathashree
- Disease Informatics, Spatial Epidemiology Lab, ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - Uma Bharthi I
- Disease Informatics, Spatial Epidemiology Lab, ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - S S Patil
- Disease Informatics, Spatial Epidemiology Lab, ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - P Krishnamoorthy
- Disease Informatics, Spatial Epidemiology Lab, ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - Mohammad Shueb
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - K P Suresh
- Disease Informatics, Spatial Epidemiology Lab, ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| |
Collapse
|
10
|
Al-Kubati AAG, Kandeel M, Hussen J, Hemida MG, Al-Mubarak AIA. Immunoinformatic prediction of the pathogenicity of bovine viral diarrhea virus genotypes: implications for viral virulence determinants, designing novel diagnostic assays and vaccines development. Front Vet Sci 2023; 10:1130147. [PMID: 37483297 PMCID: PMC10359904 DOI: 10.3389/fvets.2023.1130147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Bovine viral diarrhea virus (BVDV) significantly impacts the bovine industries, both dairy and beef sectors. BVDV can infect various domestic and wild animals, most notably cattle. The dynamic variations among BVDV serotypes due to the continuous genetic diversity, especially in BVDV1 (BVDV1), reduce the effectiveness of the currently available vaccines and reduce the specificity/sensitivity of the diagnostic assays. The development of novel, safe, and effective vaccines against BVDV requires deep knowledge of the antigenicity and virulence of the virus. Previous studies on the antigenicity and the virulence of BVDV serotypes have been mainly focused on one or a few BVDV proteins. While however, little is known about the orchestration of all BVDV in the context of viral virulence and immunogenicity. The main aim of the current study was to do a comparative computational evaluation of the immunogenicity, and virulence for all the encoded proteins of both BVDV1 and BVDV2 and their sub-genotypes. Methods To achieve this goal, 11,737 protein sequences were retrieved from Virus Pathogen Resource. The analysis involved a total of 4,583 sequences after the removal of short sequences and those with unknown collection time. We used the MP3 tool to map the pathogenic proteins across different BVDV strains. The potential protective and the epitope motifs were predicted using the VaxiJen and EMBOSS antigen tools, respectively. Results and discussion The virulence prediction revealed that the NS4B proteins of both BVDV1 and BVDV2 likely have essential roles in BVDV virulence. Similarly, both the capsid (C) and the NS4-A proteins of BVDV1 and the Npro and P7 proteins of BVDV2 are likely important virulent factors. There was a clear trend of increasing predicted virulence with the progression of time in the case of BVDV1 proteins, but that was not the case for the BVDV2 proteins. Most of the proteins of the two BVDV serotypes possess antigens predicted immunogens except Npro, P7, and NS4B. However, the predicted antigenicity of the BVDV1 was significantly higher than that of BVDV2. Meanwhile, the predicted immunogenicity of the immunodominant-E2 protein has been decreasing over time. Based on our predicted antigenicity and pathogenicity studies of the two BVDV serotypes, the sub-genotypes (1a, 1f, 1k, 2a, and 2b) may represent ideal candidates for the development of future vaccines against BVDV infection in cattle. In summary, we identified some common differences between the two BVDV genotypes (BVDV1 and BVDV2) and their sub-genotypes regarding their protein antigenicity and pathogenicity. The data presented here will increase our understanding of the molecular pathogenesis of BVDV infection in cattle. It will also pave the way for developing some novel diagnostic assays and novel vaccines against BVDV in the near future.
Collapse
Affiliation(s)
- Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Thamar, Yemen
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, NY, United States
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, NY, United States
| |
Collapse
|
11
|
Shawan MMAK, Sharma AR, Halder SK, Arian TA, Shuvo MN, Sarker SR, Hasan MA. Advances in Computational and Bioinformatics Tools and Databases for Designing and Developing a Multi-Epitope-Based Peptide Vaccine. Int J Pept Res Ther 2023; 29:60. [PMID: 37251529 PMCID: PMC10203685 DOI: 10.1007/s10989-023-10535-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
A vaccine is defined as a biologic preparation that trains the immune system, boosts immunity, and protects against a deadly microbial infection. They have been used for centuries to combat a variety of contagious illnesses by means of subsiding the disease burden as well as eradicating the disease. Since infectious disease pandemics are a recurring global threat, vaccination has emerged as one of the most promising tools to save millions of lives and reduce infection rates. The World Health Organization reports that immunization protects three million individuals annually. Currently, multi-epitope-based peptide vaccines are a unique concept in vaccine formulation. Epitope-based peptide vaccines utilize small fragments of proteins or peptides (parts of the pathogen), called epitopes, that trigger an adequate immune response against a particular pathogen. However, conventional vaccine designing and development techniques are too cumbersome, expensive, and time-consuming. With the recent advancement in bioinformatics, immunoinformatics, and vaccinomics discipline, vaccine science has entered a new era accompanying a modern, impressive, and more realistic paradigm in designing and developing next-generation strong immunogens. In silico designing and developing a safe and novel vaccine construct involves knowledge of reverse vaccinology, various vaccine databases, and high throughput techniques. The computational tools and techniques directly associated with vaccine research are extremely effective, economical, precise, robust, and safe for human use. Many vaccine candidates have entered clinical trials instantly and are available prior to schedule. In light of this, the present article provides researchers with up-to-date information on various approaches, protocols, and databases regarding the computational designing and development of potent multi-epitope-based peptide vaccines that can assist researchers in tailoring vaccines more rapidly and cost-effectively.
Collapse
Affiliation(s)
- Mohammad Mahfuz Ali Khan Shawan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Tawsif Al Arian
- Department of Pharmacy, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Md. Nazmussakib Shuvo
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Md. Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| |
Collapse
|
12
|
Nayak SS, Sethi G, Ramadas K. Design of multi-epitope based vaccine against Mycobacterium tuberculosis: a subtractive proteomics and reverse vaccinology based immunoinformatics approach. J Biomol Struct Dyn 2023; 41:14116-14134. [PMID: 36775659 DOI: 10.1080/07391102.2023.2178511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Tuberculosis is an airborne transmissible disease caused by Mycobacterium tuberculosis that infects millions of lives worldwide. There is still no single comprehensive therapy or preventative available for the lethal illness. Currently, the available vaccine, BCG is ineffectual in preventing the prophylactic adult pulmonary TB and reactivation of latent tuberculosis. Therefore, this investigation was intended to design a new multi-epitope vaccine that can address the existing problems. The subtractive proteomics approach was implemented to prioritize essential, virulence, druggable, and antigenic proteins as suitable vaccine candidates. Furthermore, a reverse vaccinology-based immunoinformatics technique was employed to identify potential B-cell, helper T lymphocytes (HTL), and cytotoxic T lymphocytes (CTL) epitopes from the target proteins. Immune-stimulating adjuvant, linkers, and PADRE (Pan HLA-DR epitopes) amino acid sequences along with the selected epitopes were used to construct a chimeric multi-epitope vaccine. The molecular docking and normal mode analysis (NMA) were carried out to evaluate the binding mode of the designed vaccine with different immunogenic receptors (MHC-I, MHC-II, and Tlr4). In addition, the MD simulation, followed by essential dynamics study and MMPBSA analysis, was carried out to understand the dynamics and stability of the complexes. In-silico cloning was accomplished using E.coli as an expression system to express the designed vaccine successfully. Finally, the immune simulation study has foreseen that our designed vaccine could induce a significant immune response by elevation of different immunoglobulins in the host. However, there is an imperative need for the experimental validation of the designed vaccine in animal models to confer effectiveness and safety.HIGHLIGHTSMulti-epitope based vaccine was designed against Mycobacterium tuberculosis using subtractive proteomics and Immunoinformatics approach.The vaccine was found to be antigenic, non-allergenic, immunogenic, and stable based on in-silico prediction.Population coverage analysis of the proposed vaccine predicts an effective response in the world population.The molecular docking, MD simulation, and MM-PBSA study confirm the stable interaction of the vaccine with immunogenic receptors.In silico cloning and immune simulation of the vaccine demonstrated its successful expression in E.coli and induction of immune response in the host. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Guneswar Sethi
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Krishna Ramadas
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| |
Collapse
|
13
|
Hermawan A, Damai FI, Martin L, Chrisdianto M, Julianto NM, Pramanda IT, Gustiananda M. Immunoinformatics Analysis of Citrullinated Antigen as Potential Multi-peptide Lung Cancer Vaccine Candidates for Indonesian Population. Int J Pept Res Ther 2022; 28:162. [PMID: 36406283 PMCID: PMC9648882 DOI: 10.1007/s10989-022-10467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer which has the highest mortality rate in Indonesia. One of the trends in treating cancer is by utilizing peptide vaccines, an immunotherapeutic approach that aims to stimulate the cell-mediated adaptive immune system to recognize cancer-associated peptides. Currently, no peptide vaccines are available in the market for NSCLC treatment. Therefore, this project aims to develop a multi-epitope peptide-based vaccine for NSCLC utilizing citrullinated peptides. Citrullination is a post-translational modification that occurs in cancer cells during autophagy that functions to induce immune responses towards modified self-epitopes such as tumor cells, through activation of PAD enzymes within the APC and target cells. It was found that introducing a common citrullinated neo-antigen peptide such as vimentin and enolase to the immune system could stimulate a higher specific CD4+ T cell response against NSCLC. Moreover, carcinoembryonic antigen (CEA), an antigen that is highly expressed in cancer cells, is also added to increase the vaccine’s specificity and to mobilize both CD4+ and CD8+ T cells. These antigens bind strongly to the MHC Class II alleles such as HLA-DRB1*07:01 and HLA-DRB*11:01, which are predominant alleles in Indonesian populations. Through in silico approach, the peptides generated from CEA, citrullinated vimentin and enolase, were analyzed for their MHC binding strength, immunogenicity, ability to induce IFNγ response, and population coverage. It is expected that the immunodominant antigens presentation is able to induce a potent immune response in NSCLC patients in Indonesia, resulting in tumor eradication.
Collapse
Affiliation(s)
- Angelika Hermawan
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Fedric Intan Damai
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Leon Martin
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Matthew Chrisdianto
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | | | - Ihsan Tria Pramanda
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Marsia Gustiananda
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| |
Collapse
|
14
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
15
|
Pathak RK, Lim B, Kim DY, Kim JM. Designing multi-epitope-based vaccine targeting surface immunogenic protein of Streptococcus agalactiae using immunoinformatics to control mastitis in dairy cattle. BMC Vet Res 2022; 18:337. [PMID: 36071517 PMCID: PMC9449294 DOI: 10.1186/s12917-022-03432-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background Milk provides energy as well as the basic nutrients required by the body. In particular, milk is beneficial for bone growth and development in children. Based on scientific evidence, cattle milk is an excellent and highly nutritious dietary component that is abundant in vitamins, calcium, potassium, and protein, among other minerals. However, the commercial productivity of cattle milk is markedly affected by mastitis. Mastitis is an economically important disease that is characterized by inflammation of the mammary gland. This disease is frequently caused by microorganisms and is detected as abnormalities in the udder and milk. Streptococcus agalactiae is a prominent cause of mastitis. Antibiotics are rarely used to treat this infection, and other available treatments take a long time to exhibit a therapeutic effect. Vaccination is recommended to protect cattle from mastitis. Accordingly, the present study sought to design a multi-epitope vaccine using immunoinformatics. Results The vaccine was designed to be antigenic, immunogenic, non-toxic, and non-allergic, and had a binding affinity with Toll-like receptor 2 (TLR2) and TLR4 based on structural modeling, docking, and molecular dynamics simulation studies. Besides, the designed vaccine was successfully expressed in E. coli. expression vector (pET28a) depicts its easy purification for production on a larger scale, which was determined through in silico cloning. Further, immune simulation analysis revealed the effectiveness of the vaccine with an increase in the population of B and T cells in response to vaccination. Conclusion This multi-epitope vaccine is expected to be effective at generating an immune response, thereby paving the way for further experimental studies to combat mastitis.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea.
| |
Collapse
|
16
|
Pritam M, Singh G, Kumar R, Singh SP. Screening of potential antigens from whole proteome and development of multi-epitope vaccine against Rhizopus delemar using immunoinformatics approaches. J Biomol Struct Dyn 2022; 41:2118-2145. [PMID: 35067195 DOI: 10.1080/07391102.2022.2028676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mucormycosis is a deadly fungal disease mainly caused by Rhizopus oryzae (strain 99-880), also known as Rhizopus delemar. Previously, mucormycosis occurs in immunocompromised patients of diabetes mellitus, cancer, organ transplant, etc. But there was a drastic increase in mucormycosis cases in the ongoing COVID-19 pandemic. Despite several available therapies and antifungal treatments, the mortality rate of mucormycosis is about more than 50%. Currently, there is no vaccine available in the market for mucormycosis that urgently needs to develop a potential vaccine against mucormycosis with high efficacy. In the present study, we have screened 4 genome-derived predicted antigens (GDPA) through sequential filtration of the whole proteome of R. delemar using different benchmarked bioinformatics tools. These 4 GDPA along with 4 randomly selected experimentally reported antigens (ERA) were sourced for prediction of B- and T- cell epitopes and utilized in designing of two potential multi-epitope vaccine candidates which can induce both innate and adaptive immunity against R. delemar. Besides these, comparative immune simulation studies and in silico cloning were performed using L. lactis as an expression system for their possible uses as oral vaccines. This is the first multi-epitope vaccine designed against R. delemar through systematic pipelined reverse vaccinology and immunoinformatic approaches. Although the wet-lab based experimental validation of designed vaccines is required before testing in the preclinical model, the current study will significantly help in reducing the cost of experimentation as well as improving the efficacy of vaccine therapy against mucormycosis and other pathogenic diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | | |
Collapse
|