1
|
Schirm S, Nouailles G, Kirsten H, Trimpert J, Wyler E, Teixeira Alves LG, Landthaler M, Ahnert P, Suttorp N, Witzenrath M, Scholz M. A biomathematical model of SARS-CoV-2 in Syrian hamsters. Sci Rep 2024; 14:30541. [PMID: 39695178 DOI: 10.1038/s41598-024-80498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
When infected with SARS-CoV-2, Syrian hamsters (Mesocricetus auratus) develop moderate disease severity presenting key features of human COVID-19. We here develop a biomathematical model of the disease course by translating known biological mechanisms of virus-host interactions and immune responses into ordinary differential equations. We explicitly describe the dynamics of virus population, affected alveolar epithelial cells, and involved relevant immune cells comprising for example CD4+ T cells, CD8+ T cells, macrophages, natural killer cells and B cells. We also describe the humoral response dynamics of neutralising antibodies and major regulatory cytokines including CCL8 and CXCL10. The model is developed and parametrized based on experimental data collected at days 2, 3, 5, and 14 post infection. Pulmonary cell composition and their transcriptional profiles were obtained by lung single-cell RNA (scRNA) sequencing analysis. Parametrization of the model resulted in a good agreement of model and data. The model can be used to predict, for example, the time course of the virus population, immune cell dynamics, antibody production and regeneration of alveolar cells for different therapy scenarios or after multiple-infection events. We aim to translate this model to the human situation in the future.
Collapse
Affiliation(s)
- Sibylle Schirm
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany.
| | - Geraldine Nouailles
- Department of Infectious Diseases and Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Peter Ahnert
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, 04107, Leipzig, Germany
| |
Collapse
|
2
|
Abdelrazig OA, Fadilah F, Erlina L, Hegar B. UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. ANKARA UNIVERSITESI ECZACILIK FAKULTESI DERGISI 2024; 48:11-11. [DOI: 10.33483/jfpau.1439430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Objective: This study utilizes integrated bioinformatics to investigate Differentially Expressed Genes (DEGs) and pathways related to ulcerative colitis (UC).
Material and Method: Differentially Expressed Genes were identified from UC patients' colonic mucosal samples and controls using GSE13367 and GSE134025 datasets. Differentially Expressed Genes selection utilized GEO2R and Venn diagrams, followed by functional annotation, pathway analysis, PPI determination via the STRING database, and GO/KEGG enrichment analysis using Metascape.
Result and Discussion: Analysis unveiled 197 DEGs, with 76 up-regulated and 121 down-regulated genes. Up-regulated genes were enriched in humoral immune response, peptidoglycan binding, and NADPH oxidase complex, while down-regulated genes were linked to inorganic anion transport, transmitter-gated ion channel activity, and integral plasma membrane components. In the PPI network, up-regulated DEGs formed a dense network (75 nodes, 190 edges), indicating significant interactions, whereas down-regulated DEGs formed a less dense network (114 nodes, 63 edges). Five hub genes (CXCR4, CXCL13, CXCL1, MMP3) were identified among the 197 DEGs. These findings provide new insights into UC's causes and offer promise for more effective therapeutic approaches.
Collapse
|
3
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Takashima Y, Inaba T, Matsuyama T, Yoshii K, Tanaka M, Matsumoto K, Sudo K, Tokuda Y, Omi N, Nakano M, Nakaya T, Fujita N, Sotozono C, Sawa T, Tashiro K, Ohta B. Potential marker subset of blood-circulating cytokines on hematopoietic progenitor-to-Th1 pathway in COVID-19. Front Med (Lausanne) 2024; 11:1319980. [PMID: 38476443 PMCID: PMC10927758 DOI: 10.3389/fmed.2024.1319980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we analyzed a relatively large subset of proteins, including 109 kinds of blood-circulating cytokines, and precisely described a cytokine storm in the expression level and the range of fluctuations during hospitalization for COVID-19. Of the proteins analyzed in COVID-19, approximately 70% were detected with Bonferroni-corrected significant differences in comparison with disease severity, clinical outcome, long-term hospitalization, and disease progression and recovery. Specifically, IP-10, sTNF-R1, sTNF-R2, sCD30, sCD163, HGF, SCYB16, IL-16, MIG, SDF-1, and fractalkine were found to be major components of the COVID-19 cytokine storm. Moreover, the 11 cytokines (i.e., SDF-1, SCYB16, sCD30, IL-11, IL-18, IL-8, IFN-γ, TNF-α, sTNF-R2, M-CSF, and I-309) were associated with the infection, mortality, disease progression and recovery, and long-term hospitalization. Increased expression of these cytokines could be explained in sequential pathways from hematopoietic progenitor cell differentiation to Th1-derived hyperinflammation in COVID-19, which might also develop a novel strategy for COVID-19 therapy with recombinant interleukins and anti-chemokine drugs.
Collapse
Affiliation(s)
- Yasuo Takashima
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masami Tanaka
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumichi Matsumoto
- Faculty of Clinical Laboratory, University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsue Omi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Fujita
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bon Ohta
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Zayou L, Prakash S, Dhanushkodi NR, Quadiri A, Ibraim IC, Singer M, Salem A, Shaik AM, Suzer B, Chilukuri A, Tran J, Nguyen PC, Sun M, Hormi-Carver KK, Belmouden A, Vahed H, Gil D, Ulmer JB, BenMohamed L. A multi-epitope/CXCL11 prime/pull coronavirus mucosal vaccine boosts the frequency and the function of lung-resident memory CD4 + and CD8 + T cells and enhanced protection against COVID-19-like symptoms and death caused by SARS-CoV-2 infection. J Virol 2023; 97:e0109623. [PMID: 38038432 PMCID: PMC10734477 DOI: 10.1128/jvi.01096-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Izabela Coimbra Ibraim
- High containment facility, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Pauline Chau Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
6
|
Elean M, Raya Tonetti F, Fukuyama K, Arellano-Arriagada L, Namai F, Suda Y, Gobbato N, Nishiyama K, Villena J, Kitazawa H. Immunobiotic Ligilactobacillus salivarius FFIG58 Confers Long-Term Protection against Streptococcus pneumoniae. Int J Mol Sci 2023; 24:15773. [PMID: 37958756 PMCID: PMC10648150 DOI: 10.3390/ijms242115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Previously, we isolated potentially probiotic Ligilactobacillus salivarius strains from the intestines of wakame-fed pigs. The strains were characterized based on their ability to modulate the innate immune responses triggered by the activation of Toll-like receptor (TLR)-3 or TLR4 signaling pathways in intestinal mucosa. In this work, we aimed to evaluate whether nasally administered L. salivarius strains are capable of modulating the innate immune response in the respiratory tract and conferring long-term protection against the respiratory pathogen Streptococcus pneumoniae. Infant mice (3-weeks-old) were nasally primed with L. salivarius strains and then stimulated with the TLR3 agonist poly(I:C). Five or thirty days after the last poly(I:C) administration mice were infected with pneumococci. Among the strains evaluated, L. salivarius FFIG58 had a remarkable ability to enhance the protection against the secondary pneumococcal infection by modulating the respiratory immune response. L. salivarius FFIG58 improved the ability of alveolar macrophages to produce interleukin (IL)-6, interferon (IFN)-γ, IFN-β, tumor necrosis factor (TNF)-α, IL-27, chemokine C-C motif ligand 2 (CCL2), chemokine C-X-C motif ligand 2 (CXCL2), and CXCL10 in response to pneumococcal challenge. Furthermore, results showed that the nasal priming of infant mice with the FFIG58 strain protected the animals against secondary infection until 30 days after stimulation with poly(I:C), raising the possibility of using nasally administered immunobiotics to stimulate trained immunity in the respiratory tract.
Collapse
Affiliation(s)
- Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Nadia Gobbato
- Laboratory of Immunology, Microbiology Institute, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
7
|
Chen LW, Jin SH, Lu Q, Zhou JG, Liu JG, Guan XY, Xia HB, He H. Identification of immunological bioprocesses involved in peri-implantitis using weighted gene co-expression network analysis. J Periodontol 2023; 94:1078-1089. [PMID: 37032448 DOI: 10.1002/jper.22-0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/04/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Peri-implantitis is an irreversible infectious disease that occurs with high incidence. Exploring the immune responses of peri-implantitis is key to developing targeted treatment strategies. However, there is limited research on the immune response of peri-implantitis. METHODS This study performed a weighted gene co-expression network analysis to identify the peri-implantitis related gene network and conducted a functional enrichment analysis of the gene network. Thereafter, the candidate hub genes were selected by constructing a protein-protein interaction network and drawing an upset plot. The hub genes were identified through their significant associations with disease condition and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Using the gene set variation analysis, the hub genes were further used to explore infiltrating immunocytes and immune factors in peri-implantitis. Finally, the immunocytes and immune factor related hub genes were intersected to obtain the therapeutic target, which was validated using histological staining. RESULTS The peri-implantitis related gene network was enriched in innate and adaptive immune response. Subsequently, interleukin (IL)1B, IL10, ITGAM, ITGB1, STAT3, and TLR4 were identified as hub genes. Plasmacytoid dendritic cells, macrophages, myeloid-derived suppressor cells, natural killer T cells, and immature B cells were positively and significantly related to the hub genes IL1B, TLR4, ITGAM, and ITGB1 (correlation coefficient > 0.80). While immune factors CXCL10, IL6, and CXCL12 and hub genes IL10 and IL1B held the highest degree in the immune factors network. IL1B may be a promising therapeutic target. CONCLUSION This study provides new insights into the hub genes, immunocytes, and immune factors underlying peri-implantitis immunological bioprocess.
Collapse
Affiliation(s)
- Liang-Wen Chen
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Su-Han Jin
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Lu
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Guo Zhou
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Guo Liu
- School of Stomatology, Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi Medical University, Zunyi, China
| | - Xiao-Yan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hai-Bin Xia
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Hassanshahi F, Noroozi Karimabad M, Miranzadeh E, Hassanshahi G, Torabizadeh SA, Jebali A. The Serum Level of CXCL9, CXCL10, and CXCL11 and the Expression of CXCR3 of Peripheral Blood Mononuclear Cells in Brucellosis Patients. Curr Microbiol 2023; 80:201. [PMID: 37140634 DOI: 10.1007/s00284-023-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against β-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.
Collapse
Affiliation(s)
- Farzaneh Hassanshahi
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran.
| | - Elahe Miranzadeh
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Jebali
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| |
Collapse
|
9
|
Tian J, Dillion BJ, Henley J, Comai L, Kaufman DL. A GABA-receptor agonist reduces pneumonitis severity, viral load, and death rate in SARS-CoV-2-infected mice. Front Immunol 2022; 13:1007955. [PMID: 36389819 PMCID: PMC9640739 DOI: 10.3389/fimmu.2022.1007955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 08/31/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and GABA-receptors (GABA-Rs) form a major neurotransmitter system in the brain. GABA-Rs are also expressed by 1) cells of the innate and adaptive immune system and act to inhibit their inflammatory activities, and 2) lung epithelial cells and GABA-R agonists/potentiators have been observed to limit acute lung injuries. These biological properties suggest that GABA-R agonists may have potential for treating COVID-19. We previously reported that GABA-R agonist treatments protected mice from severe disease induced by infection with a lethal mouse coronavirus (MHV-1). Because MHV-1 targets different cellular receptors and is biologically distinct from SARS-CoV-2, we sought to test GABA therapy in K18-hACE2 mice which develop severe pneumonitis with high lethality following SARS-CoV-2 infection. We observed that GABA treatment initiated immediately after SARS-CoV-2 infection, or 2 days later near the peak of lung viral load, reduced pneumonitis severity and death rates in K18-hACE2 mice. GABA-treated mice had reduced lung viral loads and displayed shifts in their serum cytokine/chemokine levels that are associated with better outcomes in COVID-19 patients. Thus, GABA-R activation had multiple effects that are also desirable for the treatment of COVID-19. The protective effects of GABA against two very different beta coronaviruses (SARS-CoV-2 and MHV-1) suggest that it may provide a generalizable off-the-shelf therapy to help treat diseases induced by new SARS-CoV-2 variants and novel coronaviruses that evade immune responses and antiviral medications. GABA is inexpensive, safe for human use, and stable at room temperature, making it an attractive candidate for testing in clinical trials. We also discuss the potential of GABA-R agonists for limiting COVID-19-associated neuroinflammation.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, United States
| | - Barbara J. Dillion
- High Containment Program, University of California, Los Angeles, CA, United States
| | - Jill Henley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Guo L, Cheng H, Fu S, Liu J, Zhang Y, Qiu Y, Chen H. Methylome and Transcriptome-Based Integration Analysis Identified Molecular Signatures Associated With Meningitis Induced by Glaesserella parasuis. Front Immunol 2022; 13:840399. [PMID: 35281072 PMCID: PMC8913945 DOI: 10.3389/fimmu.2022.840399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) can elicit serious inflammatory responses and cause meningitis in piglets. Previous epigenetic studies have indicated that alterations in host DNA methylation may modify the inflammatory response to bacterial infection. However, to date, genome-wide analysis of the DNA methylome during meningitis caused by G. parasuis infection is still lacking. In this study, we employed an unbiased approach using deep sequencing to profile the DNA methylome and transcriptome from G. parasuis infected porcine brain (cerebrum) and integrated the data to identify key differential methylation regions/sites involved in the regulation of the inflammatory response. Results showed that DNA methylation patterns and gene expression profiles from porcine brain were changed after G. parasuis infection. The majority of the altered DNA methylation regions were found in the intergenic regions and introns and not associated with CpG islands, with only a low percentage occurring at promoter or exon regions. Integrated analysis of the DNA methylome and transcriptome identified a number of inversely and positively correlated genes between DNA methylation and gene expression, following the criteria of |log2FC| > 0.5, |diffMethy| > 0.1, and P < 0.05. Differential expression and methylation of two significant genes, semaphoring 4D (SEMA4D) and von Willebrand factor A domain containing 1 (VWA1), were validated by qRT-PCR and bisulfite sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that DNA methylation inversely correlated genes in G. parasuis infected porcine brains were mainly involved with cell adhesion molecules (CAMs), bacterial invasion of epithelial cells, RIG-1-like receptor signaling pathways, and hematopoietic cell lineage signaling pathways. In addition, a protein-protein interaction network of differentially methylated genes found potential candidate molecular interactions relevant to the pathology of G. parasuis infection. To the best of our knowledge, this is the first attempt to integrate the DNA methylome and transcriptome data from G. parasuis infected porcine brains. Our findings will help understanding the contribution of genome-wide DNA methylation to the pathogenesis of meningitis in pigs and developing epigenetic biomarkers and therapeutic targets for the treatment of G. parasuis induced meningitis.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Hongxing Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yinsheng Qiu,
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|