1
|
Sáez-Peñataro J, Calvo G, Bascuas J, Mosquera MM, Marcos MÁ, Egri N, Torres F. Association between Reactogenicity and Immunogenicity in a Vaccinated Cohort with Two mRNA SARS-CoV-2 Vaccines at a High-Complexity Reference Hospital: A Post Hoc Analysis on Immunology Aspects of a Prospective Cohort Study. Vaccines (Basel) 2024; 12:665. [PMID: 38932394 PMCID: PMC11209257 DOI: 10.3390/vaccines12060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Enhancing our comprehension of mRNA vaccines may facilitate the future design of novel vaccines aimed at augmenting immune protection while minimising reactogenic responses. Before this design is carried out, it is important to determine whether adaptive immunity correlates with the reactogenicity profile of vaccines. We studied a large cohort that was vaccinated with mRNA vaccines to answer this question. This was an observational study with real-world data. Reactogenicity data were obtained from the VigilVacCOVID study. Immunogenicity (humoral and cellular) data were retrieved from health records. One main population (n = 215) and two subpopulations were defined (subpopulation 1, n = 3563; subpopulation 2, n = 597). Sensitivity analyses were performed with subpopulations 1 and 2 to explore the consistency of results. We analysed the association of the intensity and types of adverse reactions with the development and quantity of elicited antibody titres. As an exploratory analysis in subpopulation 1, we assessed the association between reactogenicity and cellular immunogenicity. A higher incidence of fever, malaise, and myalgia including severe cases was significantly associated with the development and quantity of positive antibody titres. No significant findings were observed with cellular immunity. We observed a positive association between immunogenicity and reactogenicity. These findings can be relevant for the future development of our understanding of how mRNA vaccines function.
Collapse
Affiliation(s)
- Joaquín Sáez-Peñataro
- Medicines Division, Department of Clinical Pharmacology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.C.); (J.B.)
| | - Gonzalo Calvo
- Medicines Division, Department of Clinical Pharmacology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.C.); (J.B.)
| | - Juan Bascuas
- Medicines Division, Department of Clinical Pharmacology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.C.); (J.B.)
| | - Maria Mar Mosquera
- Microbiology Department, Hospital Clinic, Institute for Global Health, University of Barcelona, 08036 Barcelona, Spain; (M.M.M.); (M.Á.M.)
| | - Maria Ángeles Marcos
- Microbiology Department, Hospital Clinic, Institute for Global Health, University of Barcelona, 08036 Barcelona, Spain; (M.M.M.); (M.Á.M.)
- CIBERINF, 28029 Madrid, Spain
| | - Natalia Egri
- Immunology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Ferran Torres
- Department of Biostatistics, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
2
|
Stambouli N, Bahrini K, Romdhani C, Rebai A, Boughariou S, Zakraoui M, Arfaoui B, Seyli S, Boukhalfa Y, Battikh R, Moussa MB, Labbene I, Ferjani M, Gharssallah H. Humoral and cellular response of two different vaccines against SARS-CoV-2 in a group of healthcare workers: An observational study. J Immunol Methods 2024; 528:113665. [PMID: 38490578 DOI: 10.1016/j.jim.2024.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
On March 13, 2021, Tunisia started a widespread immunization program against SARS-CoV-2 utilizing different vaccinations that had been given emergency approval. Herein, we followed prospectively a cohort of participant who received COVID-19 vaccine (Pfizer BioNTech and Sputnik-Gameleya V). The goal of this follow-up was to define the humoral and cellular immunological profile after immunization by assessing neutralizing antibodies and IFN- γ release. 26 vaccinated health care workers by Pfizer BioNTech (n=12) and Sputnik-Gameleya V (n=14) were enrolled from June to December 2021 in Military hospital of Tunis. All consenting participants were sampled for peripheral blood after three weeks of vaccination. The humoral response was investigated by the titer of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies to S1 protein. The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland). Regardless the type of vaccine, the assessment of humoral and cellular response following vaccination showed a strong involvement of the later with expression of IFN-γ as compared to antibodies secretion. Moreover, we showed that people with past SARS-CoV-2 infection developed high levels of antibodies than those who are not previously infected. However, no significant difference was detected concerning interferon gamma (IFN-γ) expression by CD4 and CD8 T cells in health care worker (HCW) previously infection or not with COVID-19 infection. Analysis of immune response according to the type of vaccine, we found that Pfizer BioNTech induced high level of humoral response (91.66%) followed by Sputnik-Gameleya V (64.28%). However, adenovirus vaccine gave a better cellular response (57.14%) than mRNA vaccine (41.66%). Regarding the immune response following vaccine doses, we revealed a significant increase of neutralizing antibodies and IFN-γ release by T cells in patients fully vaccinated as compared to those who have received just one vaccine. Collectively, our data revealed a similar immune response between Pfizer BioNTech and Sputnik-Gameleya V vaccine with a slight increase of humoral response by mRNA vaccine and cellular response by adenovirus vaccine. It's evident that past SARS-CoV-2 infection was a factor that contributed to the vaccination's increased immunogenicity. However, the administration of full doses of vaccines (Pfizer BioNTech or Sputnik-Gameleya V) induces better humoral and cellular responses detectable even more than three months following vaccination.
Collapse
Affiliation(s)
- Nejla Stambouli
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Khadija Bahrini
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia; University Tunis El Manar, Tunis, Tunisia.
| | - Chihebeddine Romdhani
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Aicha Rebai
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Sana Boughariou
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mohamed Zakraoui
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Bilel Arfaoui
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Sameh Seyli
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Yasmine Boukhalfa
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Riadh Battikh
- Department of Infectious Disease, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mohamed Ben Moussa
- Laboratory of Virology, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Iheb Labbene
- University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mustpha Ferjani
- University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Hedi Gharssallah
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia; University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| |
Collapse
|
3
|
Brisotto G, Montico M, Turetta M, Zanussi S, Cozzi MR, Vettori R, Boschian Boschin R, Vinante L, Matrone F, Revelant A, Palazzari E, Innocente R, Fanetti G, Gerratana L, Garutti M, Lisanti C, Bolzonello S, Nicoloso MS, Steffan A, Muraro E. Integration of Cellular and Humoral Immune Responses as an Immunomonitoring Tool for SARS-CoV-2 Vaccination in Healthy and Fragile Subjects. Viruses 2023; 15:1276. [PMID: 37376576 DOI: 10.3390/v15061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular and humoral immunity are both required for SARS-CoV-2 infection recovery and vaccine efficacy. The factors affecting mRNA vaccination-induced immune responses, in healthy and fragile subjects, are still under investigation. Thus, we monitored the vaccine-induced cellular and humoral immunity in healthy subjects and cancer patients after vaccination to define whether a different antibody titer reflected similar rates of cellular immune responses and if cancer has an impact on vaccination efficacy. We found that higher titers of antibodies were associated with a higher probability of positive cellular immunity and that this greater immune response was correlated with an increased number of vaccination side effects. Moreover, active T-cell immunity after vaccination was associated with reduced antibody decay. The vaccine-induced cellular immunity appeared more likely in healthy subjects rather than in cancer patients. Lastly, after boosting, we observed a cellular immune conversion in 20% of subjects, and a strong correlation between pre- and post-boosting IFN-γ levels, while antibody levels did not display a similar association. Finally, our data suggested that integrating humoral and cellular immune responses could allow the identification of SARS-CoV-2 vaccine responders and that T-cell responses seem more stable over time compared to antibodies, especially in cancer patients.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Maria Rita Cozzi
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Romina Boschian Boschin
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Vinante
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Matrone
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alberto Revelant
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elisa Palazzari
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Roberto Innocente
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Fanetti
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Mattia Garutti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Camilla Lisanti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Silvia Bolzonello
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Milena Sabrina Nicoloso
- Molecular Oncology Unit, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
4
|
Choi MJ, Heo JY, Seo YB, Yoon YK, Sohn JW, Noh JY, Cheong HJ, Kim WJ, Choi JY, Lee YJ, Lee HW, Kim SS, Kim B, Song JY. Predictive Value of Reactogenicity for Anti-SARS-CoV-2 Antibody Response in mRNA-1273 Recipients: A Multicenter Prospective Cohort Study. Vaccines (Basel) 2023; 11:120. [PMID: 36679965 PMCID: PMC9862064 DOI: 10.3390/vaccines11010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Messenger RNA (mRNA) vaccination was developed to mitigate the coronavirus disease 2019 pandemic. However, data on antibody kinetics and factors influencing these vaccines' immunogenicity are limited. We conducted a prospective study on healthy young adults who received two doses of the mRNA-1273 vaccine at 28-day intervals. After each dose, adverse events were prospectively evaluated, and blood samples were collected. The correlation between humoral immune response and reactogenicity after vaccination was determined. In 177 participants (19-55 years), the geometric mean titers of anti-S IgG antibody were 178.07 and 4409.61 U/mL, while those of 50% neutralizing titers were 479.95 and 2851.67 U/mL four weeks after the first and second vaccine doses, respectively. Anti-S IgG antibody titers were not associated with local reactogenicity but were higher in participants who experienced systemic adverse events (headache and muscle pain). Antipyretic use was an independent predictive factor of a robust anti-SARS-CoV-2 antibody response after receiving both vaccine doses. Systemic reactogenicity after the first dose influenced antibody response after the second dose. In conclusion, mRNA-1273 induced a robust antibody response in healthy young adults. Antipyretic use did not decrease the anti-SARS-CoV-2 antibody response after mRNA-1273 vaccination.
Collapse
Affiliation(s)
- Min Joo Choi
- Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yu Bin Seo
- Division of Infectious Diseases, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Young Kyung Yoon
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jang Wook Sohn
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| | - Ju-yeon Choi
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Young Jae Lee
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Hye Won Lee
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Sung Soon Kim
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 28159, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine (VIC-K), Seoul 08308, Republic of Korea
| |
Collapse
|
5
|
Complete (Humoral and Cellular) Response to Vaccination against COVID-19 in a Group of Healthcare Workers-Assessment of Factors Affecting Immunogenicity. Vaccines (Basel) 2022; 10:vaccines10050710. [PMID: 35632467 PMCID: PMC9146884 DOI: 10.3390/vaccines10050710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccination is the best way to limit the extent of the COVID pandemic. Knowledge of the duration of the immune response will allow the planning of a vaccination protocol. This study aims to validate the complete (humoral and cellular) immune responses over time in large population groups following the full vaccination of healthcare professionals in real-life conditions and to assess the relationship between antibody levels and T-cell activity in relation to the characteristics of the study group. The samples for the study were obtained from volunteers (staff of two hospitals) on three occasions: before vaccination, T0, then 4–9 weeks after full vaccination (two doses BNT162b2), T1, and 7–9 months after vaccination, T2. The humoral response was investigated by the titre of anti-SARS-CoV-2 IgG antibodies to S1 protein. Assays were performed three times at intervals. The cellular response was assessed in a subgroup of 189 subjects by QuanT-Cell SARS-CoV-2 (IGRA). The assay was performed once. A group of 344 subjects fully vaccinated with the BNT162b2 vaccine were included in the study. The humoral response was observed in 100% of subjects at both 4–7 weeks and 7–9 months, but antibody titres fell by almost 90% in this interval. The cellular response was observed in 94% (177/189) of subjects 7–9 months after the second dose of vaccine. In subjects with a negative cellular response, eight out of 12 smoked. A factor associated with greater immunogenicity of vaccination was past SARS-CoV-2 infection. The administration of full BNT162b2 vaccination (two doses) induces humoral and cellular responses detectable even more than six months after vaccination. Smoking may be a factor associated with impaired cellular response to vaccination.
Collapse
|