1
|
Ameer A, Saleem F, Keating C, Gundogdu O, Ijaz UZ, Javed S. Dataset of 16S rRNA gene sequences of 111 healthy and Newcastle disease infected caecal samples from multiple chicken breeds of Pakistan. Data Brief 2024; 57:110957. [PMID: 39386325 PMCID: PMC11461973 DOI: 10.1016/j.dib.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
The article presents a processed dataset from amplicon sequencing of the V4 region of the 16S rRNA gene to recover bacterial and archaeal taxa from the caeca of multiple chicken breeds of Pakistan. These include chicken breeds commonly raised at commercial level, Naked Neck, Black Australorp, Rhode Island Red, White Layer, and Broiler. All the breeds were challenged with Newcastle Disease Virus (NDV), with vaccination against the disease also explored. This resulted in samples belonging to four treatment groups as: Control; Vaccinated; Vaccinated and Challenged; and Non-vaccinated and Challenged. These were raised on an antibiotic free diet in a semi-controlled farming setup. 16S rRNA gene amplicon sequencing of caecal DNA from day old and mature chicken samples (22 weeks for Naked Neck, Black Australorp, Rhode Island Red and White Layer; 8 weeks for Broiler) of the four groups was performed. The paired-end reads from all the samples were quality trimmed, error corrected, and overlapped, on which unique Operational Taxonomic Units (OTUs) were obtained at 99 % similarity. Using predictive modelling, the MetaCyc functional pathways, as well as KEGG orthologs were also recovered. The generated data may be used to explore microbial interactions in gastrointestinal tract with respect to NDV vaccination and infection, together with increased understanding of chicken health and productivity.
Collapse
Affiliation(s)
- Aqsa Ameer
- Department of Biosciences, COMSATS University Islamabad, Pakistan
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, United Kingdom
| | - Farrukh Saleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Ciara Keating
- Department of Engineering, Durham University, Durham, DH1 3LE, UK
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- College of Science and Engineering, University of Galway, Ireland
| | - Sundus Javed
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| |
Collapse
|
2
|
Tian Y, Wen J, Zhang W, Zhang R, Xu X, Jiang Y, Wang X, Man C. CircMYO1B/miR-155 pathway is a common mechanism of stress-induced immunosuppression affecting immune response to three vaccines in chicken. Int Immunopharmacol 2024; 130:111719. [PMID: 38377854 DOI: 10.1016/j.intimp.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Stress-induced immunosuppression (SIIS) can weaken the immune response effect of poultry vaccination, and bring huge hidden dangers and economic losses to the poultry industry. However, the detailed molecular mechanisms are still not fully understood. Unveiling the common mechanism of SIIS affecting the immune response to different vaccines is critical for detecting and minimizing the losses caused by SIIS. This study used glucocorticoid dexamethasone (Dex) to simulate SIIS, and three classic avian vaccines (including avian influenza virus (AIV), Newcastle disease virus (NDV), and infectious bursal disease virus (IBDV)) were used to induce immune responses in chicken. Quantitative real-time PCR (qRT-PCR) revealed the expression characteristics and functions of circMYO1B and miR-155 in the processes of SIIS affecting the immune response to the aforementioned avian vaccines, as well as their targeted regulatory relationship. Subsequent bioinformatics analysis predicted FOS, one of the potential target genes of miR-155. The results showed that circMYO1B/miR-155 pathway served as a key common mechanism by which SIIS affected the immune response to the three vaccines. Both heart and proventriculus appeared to be the crucial tissues for this process, with five days post immunization (dpi) emerging as the primary time of interest. Moreover, mitogen-activated protein kinase (MAPK) signaling system played a key role in modulating the immune response subsequent to SIIS administration. Our findings provide new insights into the immune function of competitive endogenous RNA (ceRNA), which have important function in the detection and treatment of SIIS affecting vaccine immunity.
Collapse
Affiliation(s)
- Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
3
|
Ganapathy K, Parthiban S. Pros and Cons on Use of Live Viral Vaccines in Commercial Chicken Flocks. Avian Dis 2024; 67:410-420. [PMID: 38300660 DOI: 10.1637/aviandiseases-d-23-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2023] [Indexed: 02/02/2024]
Abstract
The poultry industry is the largest source of meat and eggs for the growing human population worldwide. Key concerns in poultry farming are nutrition, management, flock health, and biosecurity measures. As part of the flock health, use of live viral vaccines plays a vital role in the prevention of economically important and common viral diseases. This includes diseases and production losses caused by Newcastle disease virus, infectious bronchitis virus, infectious laryngotracheitis virus, infectious bursal disease virus, Marek's disease virus, chicken infectious anemia virus, avian encephalomyelitis virus, fowlpox virus, and avian metapneumovirus. These viruses cause direct and indirect harms, such as financial losses worth millions of dollars, loss of protein sources, and threats to animal welfare. Flock losses vary by type of poultry, age of affected animals, co-infections, immune status, and environmental factors. Losses in broiler birds can consist of high mortality, poor body weight gain, high feed conversion ratio, and increased carcass condemnation. In commercial layers and breeder flocks, losses include higher than normal mortality rate, poor flock uniformity, drops in egg production and quality, poor hatchability, and poor day-old-chick quality. Despite the emergence of technology-based vaccines, such as inactivated, subunit, vector-based, DNA or RNA, and others, the attenuated live vaccines remain as important as before. Live vaccines are preferred in the global veterinary vaccine market, accounting for 24.3% of the global market share in 2022. The remaining 75% includes inactivated, DNA, subunit, conjugate, recombinant, and toxoid vaccines. The main reason for this is that live vaccines can induce innate, mucosal, cellular, and humoral immunities by single or multiple applications. Some live vaccine combinations provide higher and broader protection against several diseases or strains of viruses. This review aimed to explore insights on the pros and cons of attenuated live vaccines commonly used against major viral infections of the global chicken industry, and the future road map for improvement.
Collapse
Affiliation(s)
- Kannan Ganapathy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, U.K.,
| | - Sivamurthy Parthiban
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, U.K
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
4
|
Conan A, Nekouei O, Paudel S, Ching A, Yau D, Pfeiffer D. Serological survey of avian metapneumovirus in vaccinated and unvaccinated broiler chickens in Hong Kong. Trop Anim Health Prod 2023; 55:179. [PMID: 37119359 DOI: 10.1007/s11250-023-03592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
In chickens, avian metapneumovirus (aMPV) causes the swollen head syndrome, a respiratory disease often associated with a reduction in egg production. The virus' epidemiology in East and Southeast Asia is poorly understood. An aMPV serological survey was conducted on broiler chicken farms of Hong Kong SAR to assess the seroprevalence of aMPV in unvaccinated batches and the serological status of vaccinated batches. Blood samples were collected from 53-93-day-old chickens in 24 chicken farms of Hong Kong SAR and sera were tested for aMPV antibodies by ELISA. Seroprevalence in aMPV unvaccinated birds was 80.6% (95% confidence interval (CI): 78.9-82.2) with a high variation between batches. Batch-level seroprevalence was not significantly different between birds hatched during the rainy season (74.3%, 95% CI: 64.0-84.5) and the ones hatched during the dry season (88.7%, 95% CI: 80.1-97.3, p = 0.5). The high seroprevalence and high antibody titers that are reported in this study indicate repeated exposure of broiler chickens to aMPV in Hong Kong SAR poultry farms. Based on these results, we recommend improving the surveillance of respiratory pathogens and applying appropriate prophylactic measures against aMPV such as vaccination.
Collapse
Affiliation(s)
- Anne Conan
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China.
| | - Omid Nekouei
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Arthur Ching
- CityU Veterinary Diagnostic Laboratory, City University of Hong Kong, Hong Kong SAR, China
| | - Denis Yau
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China
| | - Dirk Pfeiffer
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Setta A, Yehia N, Shakak AO, Al-Quwaie DA, Al- Otaibi AM, El-Saadony MT, El-Tarabily KA, Salem H. Molecular detection of highly pathogenic avian influenza H5N8 in commercial broiler chicken farms from 2019 to 2022. Poult Sci 2023; 102:102639. [PMID: 37104901 PMCID: PMC10165147 DOI: 10.1016/j.psj.2023.102639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a serious viral infection that causes massive economic losses in poultry. The current study investigated the HPAI virus prevalence in commercial broiler chicken flocks from 2019 to 2022. Organ samples, including trachea, cecal tonsils, spleen, brain, as well as tracheal and cloacal swabs, were harvested from 111 problematic broiler chicken flocks that suffered from variable mortalities accompanied with respiratory signs (103 H5-vaccinated and 8 nonvaccinated flocks) in Egypt during the observation duration. Molecular tools were used to analyze the samples, including real-time reverse transcription-polymerase chain reaction (rRT-PCR) and sequence analysis of some PCR positive strains. The results indicated that 24 flocks were positive for HPAI H5N8, representing 21.6%, with 22.3% (23/103) prevalence and 12.5% (1/8) detection in vaccinated and nonvaccinated flocks, respectively, and they were almost detected in the autumn and winter seasons. Phylogenetic evaluation of the hemagglutinin (HA) gene showed that the 6 Egyptian strains were clustered in clade 2.3.4.4b and allocated into 2 groups (I and II). The samples recovered in 2019 were clustered in new subgroup A, and samples recovered in 2020 to 2022 were clustered in new subgroup B with 10 nucleotide mutations (R72S, A83D, T140A). In conclusion, HPAI H5N8 is a serious threat even in vaccinated birds; to control such problems, periodic molecular monitoring with vaccine efficacy evaluation and the use of preventive strategies are recommended.
Collapse
|
6
|
Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MAA, Selim S, Saad AM, El-Saadony MT, El-Meihy RM, Abd El-Hack ME, El-Tarabily KA, Zanaty AM. Common viral and bacterial avian respiratory infections: an updated review. Poult Sci 2023; 102:102553. [PMID: 36965253 PMCID: PMC10064437 DOI: 10.1016/j.psj.2023.102553] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Many pathogens that cause chronic diseases in birds use the respiratory tract as a primary route of infection, and respiratory disorders are the main leading source of financial losses in the poultry business. Respiratory infections are a serious problem facing the poultry sector, causing severe economic losses. Avian influenza virus, Newcastle disease virus, infectious bronchitis virus, and avian pneumovirus are particularly serious viral respiratory pathogens. Mycoplasma gallisepticum, Staphylococcus, Bordetella avium, Pasteurella multocida, Riemerella anatipestifer, Chlamydophila psittaci, and Escherichia coli have been identified as the most serious bacterial respiratory pathogens in poultry. This review gives an updated summary, incorporating the latest data, about the evidence for the circulation of widespread, economically important poultry respiratory pathogens, with special reference to possible methods for the control and prevention of these pathogens.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Sara Abdel Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hend K Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mona A A AbdelRahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha M El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| | - Ali M Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
7
|
Habte T, Gerber PF, Ibrahim F, Groves PJ, Walkden-Brown SW. Seroprevalence of major respiratory diseases of chickens in central Ethiopia in different chicken production systems. Poult Sci 2022; 101:102065. [PMID: 36041387 PMCID: PMC9449633 DOI: 10.1016/j.psj.2022.102065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Tadiose Habte
- National Poultry Research Program, Ethiopian Institute of Agricultural Research, Debrezeite, Ethiopia; Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Fozia Ibrahim
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Peter J Groves
- Sydney School of Veterinary Science, Poultry Research Foundation, Faculty of Science, the University of Sydney, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
8
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
9
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
10
|
Gainor K, Ghosh S. A comprehensive review of viruses in terrestrial animals from the Caribbean islands of Greater and Lesser Antilles. Transbound Emerg Dis 2022; 69:e1299-e1325. [PMID: 35578793 DOI: 10.1111/tbed.14595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Viruses pose a major threat to animal health worldwide, causing significant mortalities and morbidities in livestock, companion animals and wildlife, with adverse implications on human health, livelihoods, food safety and security, regional/national economies, and biodiversity. The Greater and Lesser Antilles consist of a cluster of islands between the North and South Americas and is habitat to a wide variety of animal species. This review is the first to put together decades of information on different viruses circulating in companion animals, livestock, and wildlife from the Caribbean islands of Greater and Lesser Antilles. Although animal viral diseases have been documented in the Caribbean region since the 1940s, we found that studies on different animal viruses are limited, inconsistent, and scattered. Furthermore, a significant number of the reports were based on serological assays, yielding preliminary data. The available information was assessed to identify knowledge gaps and limitations, and accordingly, recommendations were made, with the overall goal to improve animal health and production, and combat zoonoses in the region. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| |
Collapse
|
11
|
The Novel Genetic Background of Infectious Bursal Disease Virus Strains Emerging from the Action of Positive Selection. Viruses 2021; 13:v13030396. [PMID: 33801413 PMCID: PMC7998436 DOI: 10.3390/v13030396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The circulation in Europe of novel reassortant strains of infectious bursal disease virus (IBDV), containing a unique genetic background composition, represents a serious problem for animal health. Since the emergence of this novel IBDV mosaic was first described in Poland, this scenario has become particularly attractive to uncover the evolutionary forces driving the genetic diversity of IBDV populations. This study additionally addressed the phenotypic characterization of these emergent strains, as well as the main features affecting the viral fitness during the competition process of IBDV lineages in the field. Our results showed how different evolutionary mechanisms modulate the genetic diversity of co-existent IBDV lineages, leading to the error catastrophe effect, Muller ratchet effect, or prevalence, depending on their genetic compositions. We also determined that the action of the positive selection pressure, depending on the genomic segment on which it is acting, can drive two main phenotypes for IBDV: immune-escaping strains from the selection on segment A or strains with functional advantages from the selection on segment B. This last group seems to possess an increased fitness landscape in the viral quasispecies composition, presenting better adaptability to dissimilar environmental conditions and likely becoming the dominant population. The reassortant strains also exhibited a lower mortality rate compared with the well-known vvIBDV strains, which can facilitate their spreading.
Collapse
|
12
|
Renu S, Renukaradhya GJ. Chitosan Nanoparticle Based Mucosal Vaccines Delivered Against Infectious Diseases of Poultry and Pigs. Front Bioeng Biotechnol 2020; 8:558349. [PMID: 33282847 PMCID: PMC7691491 DOI: 10.3389/fbioe.2020.558349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Infectious disease of poultry and pig are major threat to health and cause severe economic loss to the food industry and a global food safety issue. Poultry and pig act as a mixing vessel of zoonotic transmission of disease to humans. Effective mucosal vaccines used in animals could reduce the impact of diseases in food animals. Chitosan is a biocompatible polymer, and its positive charge makes it a natural mucoadhesive agent. Therefore, since last one-decade chitosan derived nanoparticles (CS NPs) have been in use widely to deliver vaccine antigens in animals through mucosal route. Primary route of entry of most infectious disease pathogen is through oral and nasal routes, and the CS NPs based vaccines delivered through that routes enhance the immunogenicity of encapsulated vaccine antigens by targeting the cargo to mucosal microfold cells, dendritic cells and macrophages. Resulting in induction of robust secretory and systemic antibodies and/or cell mediated immune response which provides protection against infections. To date, CS NPs is being widely used for mucosal vaccine delivery in poultry and pigs to control bacterial and viral infections, and tested in several preclinical trials for vaccine delivery in humans. In this review, we highlighted the progress so far made in using CS NPs as a vehicle for mucosal vaccine delivery against infectious and zoonotic diseases of poultry and pigs. Discussed about the need of CS NPs modifications, CS NPs based vaccines induced immune responses and its role in protection, and challenges in vaccination and future directions.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Bhuiyan ZA, Ali MZ, Moula MM, Bary MA, Arefin N, Giasuddin M, Khan ZUM. Seroprevalence of major avian respiratory diseases in broiler and sonali chicken in selected areas of Bangladesh. J Adv Vet Anim Res 2019; 6:561-566. [PMID: 31819887 PMCID: PMC6882717 DOI: 10.5455/javar.2019.f383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 01/06/2023] Open
Abstract
Objective This study was conducted to investigate different respiratory diseases in broiler and sonali birds in some selected districts of Bangladesh. Materials and Methods We were collected a total of 460 blood samples from 46 farms with 36 broiler farms and 10 sonali farms (cross-breed) from 2015 to 2017. All the collected serum samples were tested for determining specific antibodies of avian rhinotracheitis (ART) virus, infectious laryngotracheitis (ILT) virus, infectious bronchitis (IBV) virus, and Ornithobacterium rhinotracheale (ORT) infection using commercially available enzyme-linked immunosorbent assay kits. Results The overall seropositivity was highest in ORT (45.9%), followed by IBV (37.6%), ART (2.6%), and ILT (0.4%). Out of 360 broiler samples, highest seropositivity was recorded in ORT (43.3%) and lowest in IBV (31.4%). Surprisingly, no broiler samples were found positive for ART and ILT. In case of sonali, the seropositivity was highest in IBV (60%) and lowest in ILT (2%). With respect to types of birds and age groups, the seropositive percentage of all four pathogens was found higher in sonali than broiler. Between two age groups of sonali, the seropositive percentage of ART (12%), ORT (55%), ILT (2%), and IBV (60%) was highest at 21-60 weeks of age compared to 5-20 weeks of age. However, based on location, the seropositive of ORT and IBV was highest in Jamalpur (63.3%) and Fulbariya and Trishal (50%) and lowest in Sreepur (16.7%) and Jamalpur (3.3%). Conclusion The four pathogens are ubiquitous in nature for the sonali chickens, and the prevalence of ORT and IBV was the most prevalent viruses in the study areas. This study indicates a need for improved surveillance and characterization of ORT and ART circulating in all types of poultry in Bangladesh.
Collapse
Affiliation(s)
- Zafar Ahmed Bhuiyan
- Department of Botany, Jahangirnagar University, Savar, Dhaka1341, Bangladesh.,These two authors contributed equally
| | - Md Zulfekar Ali
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka1341, Bangladesh.,These two authors contributed equally
| | | | - Md Akramul Bary
- Central Poultry Laboratory, Nourish Poultry and Hatchery Ltd., Dhaka, Bangladesh
| | - Nishat Arefin
- Quality Assurance Department, International Beverage Private Limited, Mymensingh, Bangladesh
| | - Md Giasuddin
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka1341, Bangladesh
| | | |
Collapse
|
14
|
Bolfa P, Callanan JJ, Ketzis J, Marchi S, Cheng T, Huynh H, Lavinder T, Boey K, Hamilton C, Kelly P. Infections and pathology of free-roaming backyard chickens on St. Kitts, West Indies. J Vet Diagn Invest 2019; 31:343-349. [PMID: 30973088 DOI: 10.1177/1040638719843638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Free-roaming chickens on Caribbean islands are important sentinels for local avian diseases and those introduced by birds migrating through the Americas. We studied 81 apparently healthy unvaccinated free-roaming chickens from 9 parishes on St. Kitts, an eastern Caribbean island. Using commercial ELISAs, no chickens had antibodies against avian influenza virus, West Nile virus, or Salmonella Enteritidis, although seropositivity was high to infectious bursal disease virus (86%), infectious bronchitis virus (84%), Mycoplasma (37%), and avian avulavirus 1 (Newcastle disease virus, 31%). Examination of small and large intestinal contents revealed cestodes in 79% and nematodes in 75% of the chickens. Although ectoparasites and endoparasites were common (74% and 79%, respectively), only a few chickens had lesions at postmortem examination, mainly intestinal serosal nodules (12%) and feather loss (6%). Histologic examination of 18 organs from each bird revealed lesions in high percentages of organs, mainly the liver (86%), lung (75%), spleen (60%), small intestine (56%), skin (42%), and kidney (40%). Lesions included degenerative, reactive, inflammatory, and neoplastic, and were not correlated with the serologic status of the chickens except in one case of infectious bursal disease. Microscopically, Paratanaisia bragai was seen in the kidneys of 3 chickens and intestinal coccidiasis in 1 chicken. Pulmonary silicate aggregates were common, were present in intestinal serosal nodules, and were suggestive of environmental exposure.
Collapse
Affiliation(s)
- Pompei Bolfa
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - John J Callanan
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Jenifer Ketzis
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Silvia Marchi
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Trista Cheng
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Hieuhanh Huynh
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Tiffany Lavinder
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Kenneth Boey
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Clare Hamilton
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| | - Patrick Kelly
- Departments of Biomedical Sciences (Bolfa, Callanan, Ketzis, Marchi, Cheng, Huynh, Lavinder, Boey).,Clinical Sciences (Kelly), Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.,Moredun Research Institute, Pentlands Science Park, Edinburgh, UK (Hamilton)
| |
Collapse
|
15
|
Brown Jordan A, Blake L, Bisnath J, Ramgattie C, Carrington CV, Oura CAL. Identification of four serotypes of fowl adenovirus in clinically affected commercial poultry co-infected with chicken infectious anaemia virus in Trinidad and Tobago. Transbound Emerg Dis 2019; 66:1341-1348. [PMID: 30817083 DOI: 10.1111/tbed.13162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Fowl adenovirus (FAdV), which causes the high-impact diseases such as inclusion body hepatitis and hepatitis-hydropericardium syndrome, is of major concern to the poultry industry internationally. This study was carried out in direct response to mortality rates of up to 75% in commercial broiler flocks in Trinidad, West Indies. Symptoms in 3- to 8-week-old broilers and 13- to 18-week-old pullets pointed to infection with an immunosuppressive viral pathogen. The objectives of the study were to determine whether the infectious agent FAdV, along with other viral pathogens, was responsible for the clinical disease, and to obtain information on the serotypes of FAdV that were infecting the birds. Tissue samples from clinically affected birds from eight different farms were tested for chicken infectious anaemia virus (CIAV) and infectious bursal disease virus (IBDV) by real-time reverse transcription polymerase chain reaction (PCR) and for FAdV by conventional PCR. The birds tested positive for FAdV and CIAV, but negative for IBDV. The gene corresponding to the L1 loop of the hexon protein for FAdV was amplified and sequenced. Phylogenetic analysis of seven FAdV strains inferred that four serotypes were likely to be circulating in the chickens. Well supported genetic relatedness was observed for serotype 8a (97.8%), 8b (97.8%), 9 (95.8%) and 11 (98.8%-99.5%). This is the first published report from Trinidad and Tobago on the presence and circulation of pathogenic FAdV strains, in combination with CIAV, in poultry. The data demonstrate a possible need for the introduction of serotype-specific vaccines against FAdV, as well as vaccines against CIAV, in broilers in the region and emphasize the importance of maintaining high levels of biosecurity on farms to prevent the spread of these potentially devastating viruses between farms.
Collapse
Affiliation(s)
- Arianne Brown Jordan
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| | - Lemar Blake
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| | - Judy Bisnath
- Poultry Surveillance Unit, Animal Production and Health Services Division, Ministry of Agriculture, Land and Fisheries, National Animal Disease Centre, Centeno, Republic of Trinidad and Tobago
| | - Chad Ramgattie
- Poultry Surveillance Unit, Animal Production and Health Services Division, Ministry of Agriculture, Land and Fisheries, National Animal Disease Centre, Centeno, Republic of Trinidad and Tobago
| | - Christine V Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| | - Christopher A L Oura
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Mount Hope, Republic of Trinidad and Tobago
| |
Collapse
|
16
|
Absalón AE, Cortés-Espinosa DV, Lucio E, Miller PJ, Afonso CL. Epidemiology, control, and prevention of Newcastle disease in endemic regions: Latin America. Trop Anim Health Prod 2019; 51:1033-1048. [PMID: 30877525 PMCID: PMC6520322 DOI: 10.1007/s11250-019-01843-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
Newcastle disease (ND) infects wild birds and poultry species worldwide, severely impacting the economics of the poultry industry. ND is especially problematic in Latin America (Mexico, Colombia, Venezuela, and Peru) where it is either endemic or re-emerging. The disease is caused by infections with one of the different strains of virulent avian Newcastle disease virus (NDV), recently renamed Avian avulavirus 1. Here, we describe the molecular epidemiology of Latin American NDVs, current control and prevention methods, including vaccines and vaccination protocols, as well as future strategies for control of ND. Because the productive, cultural, economic, social, and ecological conditions that facilitate poultry endemicity in South America are similar to those in the developing world, most of the problems and control strategies described here are applicable to other continents.
Collapse
Affiliation(s)
- A E Absalón
- Vaxbiotek, S.C. San Lorenzo 122-7, 72700, Cuautlancingo, Puebla, Mexico.
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carr. Est. Santa Ines Tecuexcomac-Tepetitla Km. 1.5, 90700, Tepetitla, Tlaxcala, Mexico.
| | | | - E Lucio
- Boehringer Ingelheim Animal Health, PO Drawer 2497, Gainesville, GA, 30503-2497, USA
| | - P J Miller
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - C L Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA.
| |
Collapse
|
17
|
Astill J, Dara RA, Fraser EDG, Sharif S. Detecting and Predicting Emerging Disease in Poultry With the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus. Front Vet Sci 2018; 5:263. [PMID: 30425995 PMCID: PMC6218608 DOI: 10.3389/fvets.2018.00263] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023] Open
Abstract
Future demands for food will place agricultural systems under pressure to increase production. Poultry is accepted as a good source of protein and the poultry industry will be forced to intensify production in many countries, leading to greater numbers of farms that house birds at elevated densities. Increasing farmed poultry can facilitate enhanced transmission of infectious pathogens among birds, such as avian influenza virus among others, which have the potential to induce widespread mortality in poultry and cause considerable economic losses. Additionally, the capability of some emerging poultry pathogens to cause zoonotic human infection will be increased as greater numbers of poultry operations could increase human contact with poultry pathogens. In order to combat the increased risk of spread of infectious disease in poultry due to intensified systems of production, rapid detection and diagnosis is paramount. In this review, multiple technologies that can facilitate accurate and rapid detection and diagnosis of poultry diseases are highlighted from the literature, with a focus on technologies developed specifically for avian influenza virus diagnosis. Rapid detection and diagnostic technologies allow for responses to be made sooner when disease is detected, decreasing further bird transmission and associated costs. Additionally, systems of rapid disease detection produce data that can be utilized in decision support systems that can predict when and where disease is likely to emerge in poultry. Other sources of data can be included in predictive models, and in this review two highly relevant sources, internet based-data and environmental data, are discussed. Additionally, big data and big data analytics, which will be required in order to integrate voluminous and variable data into predictive models that function in near real-time are also highlighted. Implementing new technologies in the commercial setting will be faced with many challenges, as will designing and operating predictive models for poultry disease emergence. The associated challenges are summarized in this review. Intensified systems of poultry production will require new technologies for detection and diagnosis of infectious disease. This review sets out to summarize them, while providing advantages and limitations of different types of technologies being researched.
Collapse
Affiliation(s)
- Jake Astill
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Rozita A. Dara
- School of Computer Science, University of Guelph, Guelph, ON, Canada
| | - Evan D. G. Fraser
- Arrell Food Institute and Department of Geography, Environment and Geomatics, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Viral tools for detection of fecal contamination and microbial source tracking in wastewater from food industries and domestic sewage. J Virol Methods 2018; 262:79-88. [PMID: 30336954 DOI: 10.1016/j.jviromet.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Alternative indicators may be more suitable than thermotolerant coliform bacteria to assess enteric virus pollution in environmental waters and their removal from wastewaters. In this study, F-specific RNA bacteriophages (F-RNAPh) showed to be potential viral indicators of fecal contamination when they were quantified from domestic and food-industrial effluents containing human, chicken, swine or bovine wastes. In addition, they showed to be resistant to the primary and secondary treatments of the wastewater treatment plants. The viable F-RNAPh count showed correlation with viable thermotolerant coliforms but also with human polyomaviruses (HPyV) quantified by a new molecular method. In domestic effluents, F-RNAPh and HPyV indicators significantly correlated with a human viral pathogen, norovirus, while the bacterial indicator did not, being then better predictors of the behavior of enteric pathogenic viruses. In addition, we assessed human, bovine and fowl microbial source tracking markers, based on the molecular detections of human polyomavirus, bovine polyomavirus, and fowl adenovirus, respectively. The techniques implemented extend the range of viruses detected, since they target different viral types simultaneously. These markers could be applied when multiple source pollution is suspected, contributing to making decisions on public health interventions.
Collapse
|