1
|
Stallknecht DE, Carter DL, Blake-Bradshaw AG, Masto NM, Highway CJ, Feddersen JC, Webby R, Cohen B, Sullivan JD, Poulson R. Influenza A Virus Antibodies in Ducks and Introduction of Highly Pathogenic Influenza A(H5N1) Virus, Tennessee, USA. Emerg Infect Dis 2024; 30:2647-2650. [PMID: 39592421 PMCID: PMC11616651 DOI: 10.3201/eid3012.241126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Testing of ducks in Tennessee, United States, before introduction of highly pathogenic influenza A(H5N1) virus demonstrated a high prevalence of antibodies to influenza A virus but very low prevalence of antibodies to H5 (25%) or H5 and N1 (13%) subtypes. Antibody prevalence increased after H5N1 introduction.
Collapse
|
2
|
Stallknecht DE, Carter DL, Sullivan-Brügger L, Link P, Ferraro E, McCarty C, Davis B, Knutsen L, Graham J, Poulson RL. Highly Pathogenic H5N1 Influenza A Virus (IAV) in Blue-Winged Teal in the Mississippi Flyway Is Following the Historic Seasonal Pattern of Low-Pathogenicity IAV in Ducks. Pathogens 2024; 13:1017. [PMID: 39599570 PMCID: PMC11597780 DOI: 10.3390/pathogens13111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Highly pathogenic H5N1 (HP H5N1) influenza A virus (IAV) has been detected annually in North American ducks since its introduction during 2021, but it is unknown if this virus will follow the same seasonal and geographic patterns that have been observed with low-pathogenicity (LP) IAV in this reservoir. We monitored blue-winged teal in the Mississippi flyway prior to the detection of HP H5N1 and during two post-introduction migration cycles from spring 2022 to spring 2024, testing birds for infection and antibodies to IAV nucleoprotein (NP), hemagglutinin subtype H5, and neuraminidase subtype N1. Antigens representing clade 2.3.4.4b HP H5 and LP North American H5 were used for hemagglutination inhibition (HI) and virus neutralization (VN) tests for H5 antibodies. Virologic results were consistent with historic seasonal and geographic patterns reported for LP IAV with peak infections occurring in pre-migration staging areas in Minnesota during fall 2022. However, the high prevalence of the H5 subtype was exceptional compared to historic prevalence estimates at this same site and for the Mississippi flyway. HP H5N1 was detected on wintering areas in Louisiana and Texas during the fall of that same year and this was followed by an increase in estimated antibody prevalence to NP, H5, and N1 with no HP H5N1 detections during the wintering or spring migration periods of 2022/2023. HP H5N1 was not detected in Minnesota during fall 2023 but was detected from a single bird in Louisiana. However, a similar increase in antibody prevalence was observed during the winter and spring period of 2023 and 2024. Over the two migration cycles, there was a temporal shift in observed prevalence and relative titers against the H5 antigens with a higher proportion of ducks testing positive to the 2.3.4.4b H5 antigen and higher relative titer to that antigen compared to the representative LP North American H5 antigen. The seasonal and geographic patterns observed appear to be driven by population immunity during the migration cycle. Results support an initial high infection rate of HP H5N1 in blue-winged teal in the Mississippi flyway followed by a high prevalence of antibodies to NP, H5, and N1. Although prevalence was much reduced in the second migration cycle following introduction, it is not known if this pattern will persist in the longer term or affect historic patterns of subtype diversity in this reservoir.
Collapse
Affiliation(s)
- David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Lyndon Sullivan-Brügger
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 5476 Grand Chenier Hwy, Grand Chenier, LA 70643, USA
| | - Emily Ferraro
- School of Renewable Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ciara McCarty
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, Bemidji, MN 56601, USA
| | - Bruce Davis
- Wetland Wildlife Populations and Research Group, Minnesota Department of Natural Resources, Bemidji, MN 56601, USA
| | - Lynda Knutsen
- Agassiz National Wildlife Refuge, U.S. Fish and Wildlife Service, Middle River, MN 56737, USA
| | - James Graham
- Agassiz National Wildlife Refuge, U.S. Fish and Wildlife Service, Middle River, MN 56737, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Liu J, Liang Z, Sun W, Hua W, Huang S, Wen F. The H4 subtype of avian influenza virus: a review of its historical evolution, global distribution, adaptive mutations and receptor binding properties. Poult Sci 2024; 103:103913. [PMID: 38914042 PMCID: PMC11254717 DOI: 10.1016/j.psj.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
The H4 subtype of avian influenza virus (AIV) exhibits a wide host range and is commonly found in migratory waterfowl. Recent studies have revealed that the H4N6 AIV can infect guinea pigs via aerosol transmission without prior adaptation. Additionally, the Q226L/G228S substitutions in the receptor-binding site have led to structural changes in globular head of H4 AIV, resulting in a configuration similar to that of pandemic H2N2 and H3N2 human influenza viruses. This article provides an updated review of the historical evolution, global distribution, adaptive mutations, receptor-binding preferences, and host range of H4 AIV. The insights presented herein will help in assessing the potential risk of future H4 AIV epidemics.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Weiping Hua
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| |
Collapse
|
4
|
Brown JD, Black A, Haman KH, Diel DG, Ramirez VE, Ziejka RS, Fenelon HT, Rabinowitz PM, Stevens L, Poulson R, Stallknecht DE. Antibodies to Influenza A(H5N1) Virus in Hunting Dogs Retrieving Wild Fowl, Washington, USA. Emerg Infect Dis 2024; 30:1271-1274. [PMID: 38782373 PMCID: PMC11138995 DOI: 10.3201/eid3006.231459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
We detected antibodies to H5 and N1 subtype influenza A viruses in 4/194 (2%) dogs from Washington, USA, that hunted or engaged in hunt tests and training with wild birds. Historical data provided by dog owners showed seropositive dogs had high levels of exposure to waterfowl.
Collapse
|
5
|
Teitelbaum CS, Masto NM, Sullivan JD, Keever AC, Poulson RL, Carter DL, Blake-Bradshaw AG, Highway CJ, Feddersen JC, Hagy HM, Gerhold RW, Cohen BS, Prosser DJ. North American wintering mallards infected with highly pathogenic avian influenza show few signs of altered local or migratory movements. Sci Rep 2023; 13:14473. [PMID: 37660131 PMCID: PMC10475108 DOI: 10.1038/s41598-023-40921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. Despite its prominence and economic impacts, we know relatively little about how HPAI spreads in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement patterns of infected and uninfected birds and found no clear differences; infected birds moved just as much during winter, migrated slightly earlier, and migrated similar distances as uninfected birds. Infected mallards also contacted and shared space with uninfected birds while on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or movement behavior in mallards infected at this location during winter; if these results are confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds could contribute to the maintenance and dispersal of HPAI in North America. Further research on more species across larger geographic areas and multiple seasons would help clarify potential impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals.
Collapse
Affiliation(s)
- Claire S Teitelbaum
- Akima Systems Engineering, Herndon, VA, USA.
- Contractor to U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
- Bay Area Environmental Research Institute and NASA Ames Research Center, Moffett Field, CA, USA.
| | - Nicholas M Masto
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Jeffery D Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| | - Allison C Keever
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Deborah L Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Cory J Highway
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | | | - Heath M Hagy
- U.S. Fish and Wildlife Service, National Wildlife Refuge System, Stanton, TN, USA
| | - Richard W Gerhold
- University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Bradley S Cohen
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Diann J Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| |
Collapse
|
6
|
Evolutionary Dynamics of Avian Influenza Viruses Isolated from Wild Birds in Moscow. Int J Mol Sci 2023; 24:ijms24033020. [PMID: 36769336 PMCID: PMC9917497 DOI: 10.3390/ijms24033020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Forty-five strains of AIVs were isolated from wild aquatic birds during their autumn migration through Moscow (Russia). The aim of this work is to study the dynamics of AIV genomes in their natural habitat. Viruses were isolated from fecal sample in embryonated chicken eggs; their complete genomes were sequenced, and a phylogenetic analysis was performed. The gene segments of the same lineage persisted over the years in the absence of persistence of complete viral genomes. The genes for internal proteins of the same lineage were often maintained by the viruses over few years; however, they were typically associated with the genes of novel HA and NA subtypes. Although frequent reassortment events were observed for any pair of internal genes, there was no reassortment between HA and NA segments. The differences in the persistence of phylogenetic lineages of surface and internal proteins and the different evolutionary strategy for these two types of genes of AIVs in primary hosts are discussed.
Collapse
|