1
|
Voutsinos-Frantzis O, Karavidas I, Petropoulos D, Zioviris G, Fortis D, Ntanasi T, Ropokis A, Karkanis A, Sabatino L, Savvas D, Ntatsi G. Effects of NaCl and CaCl 2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. PLANTS (BASEL, SWITZERLAND) 2023; 12:1454. [PMID: 37050080 PMCID: PMC10097257 DOI: 10.3390/plants12071454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Corn salad (Valerianella locusta) is a popular winter salad, cultivated as an ingredient for ready-to-eat salads. The application of mild salinity stress (eustress) can increase the flavor and reduce the nitrate content of certain crops but, at the same time, a wrong choice of the eustress type and dose can negatively affect the overall productivity. In this research, the effects of different isosmotic salt solutions, corresponding to two different electrical conductivity (EC) levels, were investigated on the yield and mineral composition of hydroponically grown Valerianella locusta "Elixir". Five nutrient solutions (NS) were compared, including a basic NS used as the control, and four saline NS were obtained by adding to the basic NS either NaCl or CaCl2 at two rates each, corresponding to two isosmotic salt levels at a low and high EC level. Corn salad proved moderately susceptible to long-term salinity stress, suffering growth losses at both low and high EC levels of saline solution, except from the low NaCl treatment. Hence, it appears that mild salinity stress induced by NaCl could be employed as an eustress solution and corn salad could be cultivated with low-quality irrigation water (20 mM NaCl) in hydroponic systems.
Collapse
Affiliation(s)
- Orfeas Voutsinos-Frantzis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Petropoulos
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios Zioviris
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Fortis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas Ropokis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Anestis Karkanis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
2
|
Elumalai V, Rajmohan N, Sithole B, Li P, Uthandi S, van Tol J. Geochemical evolution and the processes controlling groundwater chemistry using ionic ratios, geochemical modelling and chemometric analysis in uMhlathuze catchment, KwaZulu-Natal, South Africa. CHEMOSPHERE 2023; 312:137179. [PMID: 36356809 DOI: 10.1016/j.chemosphere.2022.137179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The sources of chemical constituents of groundwater and its associated hydrogeochemical processes in the part of Mhlathuze catchment was identified. Groundwater of the area is classified into soft to very hard and the nature is identified as acidic to alkaline. The overall electrical conductivity is < 3000 μS/cm except in three wells. The predominant water type is NaCl (69% of samples) and CaMgCl facies. Gibbs plots, mCa/Mg ratio, mNa/Cl ratio, Ca + Mg vs HCO3+SO4 plot, Na + K vs HCO3 plot, Ca/Na vs HCO3/Na, Chloroalkaline indices (CAI 1, CAI 2) and Ca + Mg-HCO3-SO4 vs Na + K-Cl plots confirm the impact of silicate, carbonate mineral weathering and ion exchange reaction in this aquifer. However, few wells are influenced by the evaporation process. Groundwater is highly undersaturated with sulphate, chloride minerals and saturated with carbonate minerals. CA revealed that Cl and SO4 are derived from anthropogenic sources and a significant positive correlation between HCO3 and Cl reveals that wastewater recharge has most likely simulated the mineral weathering in the vadose zone, which could have further enhanced HCO3 and Cl in the aquifer. PCA resulted in three factors. Factor 1 defines the influence of geogenic and anthropogenic processes while Factors 2 and 3 imply the mineral weathering and nitrification processes. Hierarchical cluster analysis defines that evaporation, anthropogenic input, silicate and carbonate weathering and nitrification process are the sources of chemical constituents of groundwater in this aquifer.
Collapse
Affiliation(s)
| | - N Rajmohan
- Water Research Center, King Abdulaziz University, Jeddah, 21598, Saudi Arabia
| | - Bongani Sithole
- Department of Hydrology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India-641003
| | - Johan van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
3
|
Rajmohan N, Masoud MHZ, Niyazi BAM. Appraisal of groundwater quality and health risk in the Yalamlam basin, Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83653-83670. [PMID: 35771332 DOI: 10.1007/s11356-022-21708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Groundwater quality in Yalamlam basin, Saudi Arabia, was appraised for drinking, irrigation, livestock and poultry applications by international standards, drinking water quality index (DWQI), irrigation water quality (IWQ) parameters, and irrigation water quality index (IWQI) calculations. Potential non-carcinogenic health risks due to high NO3- and F- water were assessed for various age groups using the United States Environmental Protection Agency (USEPA) models. Groundwater samples (n = 40) were analyzed for pH, electrical conductivity (EC), and major and minor constituents. The average total dissolved solids (TDS), EC, and total hardness (TH) in the groundwater are 3478 µS/cm, 1739 mg/l, and 1240 mg/l, respectively. High salinity, TH, NO3-, and F- in this aquifer restrict the usage of groundwater for drinking. DWQI values suggest that only 47.5% of samples are potable. According to USEPA recommendation, 72.5%, 80%, and 100% of samples for NO3- and 22.5%, 32.5%, and 40% of samples for F- surpassed the limit (HQoral > 1) for adults, children, and infants, respectively, which creates non-carcinogenic health hazards to the respective age groups. The total hazard index is greater than one in 75%, 87.5%, and 100% of samples computed for adults, children, and infants, respectively. Due to high salinity, 53% of samples are not pertinent for irrigation. USSL classification reveals that groundwater samples in the study site are recommended only for salt-tolerant crops and coarse-textured high permeability soil. In this study, IWQI is reclassified using salinity, which suggests that 68% of samples are moderately suitable for irrigation. Based on EC alone, 83% are desirable for livestock and poultry uses whereas integration of multiple parameters with EC indicates that only 53% are acceptable for all kinds of livestock and poultry uses in the study site. Spatial distribution of major and minor ions, DWQI, HQoral, and IWQI imply that groundwater quality is degraded from upstream to downstream. High salinity groundwater in the downstream wells is unsuitable for any application, which needs a proper treatment before use. Spatial maps created for various parameters are useful for identifying the good quality groundwater zone for groundwater development potential for various stakeholders.
Collapse
Affiliation(s)
- Natarajan Rajmohan
- Water Research Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia.
| | - Milad H Z Masoud
- Water Research Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia
- Hydrology Department, Desert Research Centre, 1 Mathaf Al-Mataria-Cairo, P. O. Box 11753, Cairo, Egypt
| | - Burhan A M Niyazi
- Water Research Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia
- Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Masoud MHZ, Rajmohan N, Basahi JM, Niyazi BAM. Application of water quality indices and health risk models in the arid coastal aquifer, Southern Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70493-70507. [PMID: 35585455 DOI: 10.1007/s11356-022-20835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
A systematic study was performed in the arid coastal aquifer to evaluate groundwater quality using drinking water quality indices (DWQI) and health risk assessment models in southern Saudi Arabia. Groundwater samples were collected (n = 80) and analysed for major and minor ions. Results suggest that 85% of wells are unsuitable for drinking due to high salinity and hardness. Likewise, high NO3- and F- are encountered in 51% and 46% of wells, respectively. High salinity, Cl- and SO42- are noticed in the coastal wells, which are derived from saline sources, evaporation and anthropogenic activities. High NO3- is originated from anthropogenic sources and the nitrification process. Recharge of wastewater with high NO3- is mixed with high salinity groundwater in this shallow aquifer. DWQI indicates that 66% of samples are poor to unsuitable classes. Wells with poor quality groundwater existed in the coastal belt and water quality is degraded while moving from upstream to downstream. The average values of hazard quotient (HQoral, NO3-, F-) and total hazard index (THI) ensured that highly vulnerable groups are in the order of infants > children > adults. In the study region, the THI are > 1 in 75% (adults), 89% (children) and 94% (infants) of samples, respectively. The spatial distribution of HQoral reveals that groundwater in the coastal and southern regions is not advisable for direct oral ingestion, which causes serious non-carcinogenic health risk to inhabitants. Groundwater in these regions needs proper treatment to remove the contaminants before use.
Collapse
Affiliation(s)
- Milad H Z Masoud
- Water Research Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia.
- Hydrology Department, Desert Research Centre, Cairo, Egypt.
| | - Natarajan Rajmohan
- Water Research Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia
| | - Jalal M Basahi
- Department of Hydrology, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia
| | - Burhan A M Niyazi
- Water Research Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21598, Saudi Arabia
| |
Collapse
|
5
|
Gugulothu S, Subba Rao N, Das R, Duvva LK, Dhakate R. Judging the sources of inferior groundwater quality and health risk problems through intake of groundwater nitrate and fluoride from a rural part of Telangana, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49070-49091. [PMID: 35212895 DOI: 10.1007/s11356-022-18967-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Evaluation of groundwater quality and related health hazards is a prerequisite for taking preventive measures. The rural region of Telangana, India, has been selected for the present study to assess the sources and origins of inferior groundwater quality and to understand the human health risk zones for adults and children due to the consumption of nitrate ([Formula: see text])- and fluoride (F-)-contaminated groundwater for drinking purposes. Groundwater samples collected from the study region were determined for various chemical parameters. Groundwater quality was dominated by Na+ and [Formula: see text] ions. Piper's diagram and bivariate plots indicated the carbonate water type and silicate weathering as a main factor and man-made contamination as a secondary factor controlling groundwater chemistry; hence, the groundwater quality in the study region is low. According to the Groundwater Quality Index (GQI) classification, 48.3% and 51.7% of the total study region are excellent (GQI: < 50) and good (GQI: 50 to 100) water quality types, respectively, for drinking purposes. However, [Formula: see text] ranged from 0.04 to 585 mg/L, exceeding the drinking water quality limit of 45 mg/L in 34% of the groundwater samples due to the effects of nitrogen fertilizers. This was supported by the relationship of [Formula: see text] with TDS, Na+, and Cl-. The F- content was from 0.22 to 5.41 mg/L, which exceeds the standard drinking water quality limit of 1.5 mg/L in 25% of the groundwater samples. The relationship of F- with pH, Ca2+, Na+, and [Formula: see text] supports the weathering and dissolution of fluoride-rich minerals for high F- content in groundwater. They were further supported by a principal component analysis. The Health Risk Index (HRI) values ranged from 0.20 to 20.10 and 0.36 to 30.90 with a mean of 2.82 and 4.34 for adults and children, respectively. The mean intensity of HRI (> 1.0) was 1.37 times higher in children (5.70) than in adults (4.16) due to the differences in weight size and exposure time. With an acceptable limit of more than 1.0, the study divided the region into Northern Safe Health Zone (33.3% for adults and 28.1% for children) and Southern Unsafe Health Zone (66.7% for adults and 71.9% for children) based on the intensity of agricultural activity. Therefore, effective strategic measures such as safe drinking water, denitrification, defluoridation, rainwater harvesting techniques, sanitary facilities, and chemical fertilizer restrictions are recommended to improve human health and protect groundwater resources.
Collapse
Affiliation(s)
- Sakram Gugulothu
- Geology, Remote Sensing, and GIS, CSIR-National Geophysical Research Institute, Hyderabad, 500007, Telangana, India.
| | - N Subba Rao
- Department of Geology, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | - Rashmirekha Das
- Department of Geology, Utkal University, Bhubaneswar, 751 004, Odisha, India
| | - Laxman Kumar Duvva
- Centre for Environment, Jawaharlal Nehru Technological University, Hyderabad, 500 085, Telangana, India
| | - Ratnakar Dhakate
- Geology, Remote Sensing, and GIS, CSIR-National Geophysical Research Institute, Hyderabad, 500007, Telangana, India
| |
Collapse
|
6
|
Subba Rao N, Dinakar A, Sun L. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover - A case study. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:103990. [PMID: 35452913 DOI: 10.1016/j.jconhyd.2022.103990] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the degree of groundwater pollution and to assess the contribution of specific ionic sources to groundwater, thereby helping to identify the changes in groundwater chemistry and also in groundwater quality from a rural part of Telangana, India, using the comprehensive understanding of geochemical ratios (GR), pollution index of groundwater (PIG), unmix model (UM), and land use/land cover. Groundwater samples collected (22) from the study area were analysed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, NO3-, and F-. The hydrogeochemical diagram showed the dominant groundwater type of Ca2+- Mg2+- HCO3- due to the water-soil-rock interactions. GR, chloro-alkaline indices, and saturation indices revealed the groundwater chemistry that explains the mineral weathering and dissolution, ion exchange, and evaporation processes as the chief geogenic origin, and also the contamination of surface water due to the influence of household wastewater, septic tank leaks, irrigation-return-flows, chemical composts, etc. as the secondary anthropogenic sources on the aquifer system. Changes in groundwater quality from the recharge area to the discharge area and the correlation coefficient of chemical variables further supported the sources of geogenic and anthropogenic origins. According to PIG's calculations, the present study area was classified as the insignificant pollution zone (5.89%), which shows all chemical variables within their drinking water quality limits, and the low pollution zone (43.34%), medium pollution zone (27.48%), high pollution zone (17.34%), and very high pollution zone (5.95%), which exhibit the TDS, Mg2+, Na+, K+, HCO3-, Cl-, NO3-, SO42-, and F-contents above the drinking water quality standards. This indicates the gradual increase in the intensity of pollution activity. UM also classified the contribution of specific ions (>50%) into three sources: Source I (K+) measures the poor sewage conditions and potash fertilizers; Source II (SO42-, Mg2+, NO3-, Na+, and Ca2+) specifies the poor sewage conditions, irrigation-return-flows, and chemical fertilizers (gypsum and nitrate); and Source III (F- and HCO3-) represents the dissolution of fluoride minerals as a major contributor to groundwater chemistry. Furthermore, the land use/land cover observations had also supported the assessment of groundwater pollution levels and the contribution of specific ionic sources made by PIG and UM. As a result, the present study clearly indicated that groundwater quality of a geogenic origin is primarily overcome the impact of anthropogenic sources. Therefore, the present study suggested strategic measures to control groundwater pollution and improve groundwater quality.
Collapse
Affiliation(s)
- N Subba Rao
- Department of Geology, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, India.
| | - A Dinakar
- Department of Geology, Andhra University, Visakhapatnam 530 003, Andhra Pradesh, India
| | - L Sun
- School of Resources and Civil Engineering, Suzhou University, Anhui 234000, China
| |
Collapse
|
7
|
Gaikwad SK, Gaikwad SP, Wagh VM, Meshram DC, Kadam AK, Muley AA, Sahu UL. Appraisal of groundwater from lithological diversity of the western coastal part, Maharashtra, India: An integrated hydrogeochemical, geospatial and statistical approaches. MARINE POLLUTION BULLETIN 2022; 178:113595. [PMID: 35413501 DOI: 10.1016/j.marpolbul.2022.113595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/21/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The present study attempts to decipher the seasonal variations in hydro-geochemistry of groundwater in the Terekhol River Basin, western coastal region, Maharashtra, India. A total of 65 groundwater samples of post-monsoon (POMS) and pre-monsoon (PRMS) seasons were collected and analyzed for major ion composition using standard analytical procedures of APHA. Piper and Gibbs plots is used to elucidate the controlling factors which altering the groundwater composition. Scatter plots of ions indicate that major ions from lithologies exposed in the study area and anthropogenic activities are altering the groundwater chemistry. Statistical analysis includes correlation, factor analysis and cluster analysis used to interpret the hydrochemical data. As compared to the WHO drinking standards, all the groundwater samples are fit for drinking. Irrigation water suitability was ascertained based on SAR, %Na and KR indices. Overall, the groundwater chemistry in study area is reflects changes in natural processes rather than anthropogenic inputs.
Collapse
Affiliation(s)
- S K Gaikwad
- Department of Geology, Savitribai Phule, Pune University, Pune, Maharashtra, India.
| | - S P Gaikwad
- Department of Geology, Savitribai Phule, Pune University, Pune, Maharashtra, India
| | - V M Wagh
- School of Earth Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India.
| | - D C Meshram
- Department of Geology, Savitribai Phule, Pune University, Pune, Maharashtra, India
| | - A K Kadam
- Department of Environmental Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India.
| | - A A Muley
- School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra 431606, India
| | - U L Sahu
- Department of Geology, Toshniwal College of Arts, Commerce and Science, Sengaon, Hingoli, Maharashtra, India
| |
Collapse
|
8
|
Assessment of Concentration Levels of Contaminants in Groundwater of the Soutpansberg Region, Limpopo Province, South Africa. WATER 2022. [DOI: 10.3390/w14091354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Groundwater contributions towards improved food security and human health depend on the level of contaminants in groundwater resources. Many people in rural areas use groundwater for drinking purposes without treatment and knowledge of contaminant levels in such waters, owing to parachute research in which research outputs are not shared with communities. This study argues that parachute research exposes groundwater users to health hazards and threatens the food security of communities. Concentration levels of contaminants were measured to ascertain suitability of groundwater for drinking and irrigation purposes. A total of 124 groundwater quality samples from 12 boreholes and 2 springs with physiochemical data from 1995 to 2017 were assessed. This study found high concentration levels of contaminants, such as F−, NO3−, Cl−, and total dissolved solids, in certain parts of the studied area. In general, groundwater was deemed suitable for drinking purposes in most parts of the studied area. Combined calculated values of sodium adsorption ratios, Na%, magnesium hazards, the permeability index, residual sodium carbonate, and total dissolved solids determined that groundwater was suitable for irrigation purposes. The discussion in this paper shows that scientific knowledge generated on groundwater quality is not aimed at developing skills and outputs for improved human health and food security but rather for scientific publication and record keeping, leaving communities where such data has been gathered devoid of knowledge about groundwater quality. In this study, it is recommended that research outputs on groundwater quality should be shared with groundwater users through various initiatives.
Collapse
|
9
|
Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. WATER 2021. [DOI: 10.3390/w13192660] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of sustainability issues around water resource consumption is gaining traction under global warming and land utilization complexities. These concerns increase the challenge of gaining an appropriate comprehension of the anthropogenic activities and natural processes, as well as how they influence the quality of surface water and groundwater systems. The characteristics of water resources cause difficulties in the comprehensive assessment regarding the source types, pathways, and pollutants behaviors. As the behavior and prediction of widely known contaminants in the water resources remain challenging, some new issues have developed regarding heavy metal pollutants. The main aim of this review is to focus on certain essential pollutants’ discharge from anthropogenic activities categorized based on land-use sectors such as industrial applications (solid/liquid wastes, chemical compounds, mining activities, spills, and leaks), urban development (municipal wastes, land use practices, and others), and agricultural practices (pesticides and fertilizers). Further, important pollutants released from natural processes classified based on climate change, natural disasters, geological factors, soil/matrix, and hyporheic exchange in the aquatic environment, are also discussed. Moreover, this study addresses the major inorganic substances (nitrogen, fluoride, and heavy metals concentrations). This study also emphasizes the necessity of transdisciplinary research and cross-border communication to achieve sustainable water quality using sound science, adaptable legislation, and management systems.
Collapse
|
10
|
Nematollahi MJ, Keshavarzi B, Moore F, Nasrollahzadeh Saravi H, Rahman MM. Hydrogeochemical and ecological risk assessments of trace elements in the coastal surface water of the southern Caspian Sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:452. [PMID: 34181101 DOI: 10.1007/s10661-021-09211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the occurrence, distribution, and potential ecological risk of trace elements (TEs) along with the hydrogeochemical characteristics of coastal surface water collected from the southern Caspian coasts in the Mazandaran province of Iran. Eighteen coastal water sites were sampled and analyzed using inductively coupled plasma-mass spectrometry and ion chromatography to determine concentrations of TEs and major ions, respectively. Mean concentrations (µg/l) of TEs in the water followed the order: Al (154.3) > Fe (73.6) > Zn (67.8) > Mn (29.9) > Cu (5.7) > Mo (3.7) > Cd (2.8) > Se (2.3) > V (1.9) > Co = As (1.8) > Sb (1.2) > Pb (0.6). TEs displayed high variations within samples, reflecting many sources that control their concentrations in the coastal water. Most TEs displayed elevated concentrations in the east and west of the study area. The Na-Cl water type in the majority of investigated sites indicates excess alkaline elements and strong acid anions relative to alkaline earth cations and weak acid anions. Considering the saturation states of minerals, carbonate and evaporite minerals are oversaturated and unsaturated in surface water, respectively. Compositional interrelations between aqueous species showed that reverse cation exchange may have occurred. The excess SO42- content, derived from irrigation return flow and domestic greywater, probably plays a crucial role in the mobilization and transport of Zn and Pb by binding to sulfate ligands and forming aqueous complexes. Ecological risk assessment of TEs revealed that water in the majority of sites is safe in terms of As, Se, Pb, and Cd content, and unsuitable with respect to Zn and Cu. Acute and chronic toxicities of Cu and Zn are reported in several sites, thus coastal water cannot be used for fishery and protecting "nature reserve" purposes. However, industrial activity and tourism are safe to be conducted in most coastal water sites.
Collapse
Affiliation(s)
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454, Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454, Shiraz, Iran
| | - Hassan Nasrollahzadeh Saravi
- Caspian Sea Ecology Research Center (CSERC), Agricultural Research, Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Sari, Iran
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Eltarabily MG, Moghazy HEM. GIS-based evaluation and statistical determination of groundwater geochemistry for potential irrigation use in El Moghra, Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:306. [PMID: 33905038 DOI: 10.1007/s10661-021-09058-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The El Moghra area is located in northwestern Egypt in the Western Desert. It is classified as the first priority of the national project to reclaim 1.50 million feddan of Egypt's desert lands. Groundwater quality assessment of the El Moghra aquifer is essential because irrigation water requirements in the El Moghra area depend solely on groundwater. A geochemistry analysis was conducted for 230,000 feddans from forty-six groundwater samples collected during the drilling process of deep wells in year 2018 and 2019. Our study's main objective is to determine whether the groundwater in the El Moghra aquifer is suitable for irrigation use. ArcGIS was used to prepare the geospatial distribution maps of major elements. Hydrochemical characteristics and groundwater types were identified from descriptive analyses of groundwater samples. Multivariate statistical analysis was run using SPSS; correlation coefficients were first determined; then, a correlation matrix was generated. Principal component analysis was performed and a covariance matrix with varimax rotation was produced. Results revealed the alkalinity and the high salinity of groundwater in the project study area. Most of the samples had a total hardness greater than 300 mg/l. Sodium chloride (Na-Cl) is the dominant type for groundwater samples. The mechanism controlling groundwater chemistry depends on rock weathering. Principal component analysis results showed that two eigenvectors among ten have a 72.86% contribution to the cumulative variance. The higher TDS values (14,008 mg/l) confirm the ions release when the upward groundwater flow from the lower Nubian Sandstone aquifer system to the upper quaternary aquifer occurs. Additionally, the geospatial maps of ion distribution showed that the frequent release of minerals happens in the northwestern part of the project study area: the eastern Qattara Depression. A perfect correlation between sodium and chloride distributions was obtained, and it is identical to the electrical conductivity distribution as well. Our study recommends very salt-tolerant crops as canola, barley, quinoa, and jojoba to be planted in the project area. Drought-tolerant crops as Barbary fig and Jatropha are also recommended. Applying irrigation water frequently with short intervals between irrigations to avoid soil drying and surface clusters' formation, as well as enhance leeching of salts away from the root systems, is essential.
Collapse
Affiliation(s)
- Mohamed Galal Eltarabily
- Civil Engineering Department, Faculty of Engineering, Port Said University, Port Said, 42523, Egypt.
- Kearney Agricultural Research and Extension Center, University of California, parlier, California, 93648, United States.
| | - Hossam Eldin M Moghazy
- Irrigation Engineering and Hydraulics Department, Faculty of Engineering, Alexandria University, Alexandria, 21527, Egypt
| |
Collapse
|
12
|
Abstract
Porous media with low/moderate regional velocities can exhibit a complex dynamic of contamination plumes, in which advection and molecular diffusion are comparable. In this work, we present a two-dimensional scenario with a constant concentration source and impermeable upper and lower boundaries. In order to characterise the plume patterns, a detailed discriminated dimensionless technique is used to obtain the dimensionless groups that govern the problem: an aspect ratio of the domain including characteristic lengths, and two others relating time and the horizontal length of the spread of contamination. The monomials are related to each other to enable their dependences to be translated into a set of new universal abacuses. Extensive numerical simulations were carried out to check the monomials and to plot these type curves. The abacuses provide a tool to directly manage the contamination process, covering a wide spectrum of possible real cases. Among other applications of interest, they predict the maximum horizontal and transversal plume extensions and the time-spatial dependences of iso-concentration patterns according to the physical parameters of the problem.
Collapse
|
13
|
Zhang Q, Xu P, Qian H, Yang F. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140460. [PMID: 32886997 DOI: 10.1016/j.scitotenv.2020.140460] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Too little and too much fluorine are potentially hazardous for human health. In the Jiaokou Irrigation District, ionic concentrations, hydrogeochemistry, and fluoride contaminations were analyzed using correlation matrices, principal component analysis (PCA), and health risk assessment. The patterns for the average cation and anion concentrations were Na+ > Mg2+ > Ca2+ > K+ and SO42- > HCO3- > Cl- > NO3- > CO32-. The fluoride concentrations ranged between 0.29 and 8.92 mg/L (mean = 2.4 mg/L). 5% of the samples displayed lower than the recommended limit of 0.5 mg/L fluoride content, while 69% exceeded the allowable limits of 1.5 mg/L for drinking. The low F- content is distributed in a small part of the southeast, while elevated F- mainly in the central area of the study region. The PCA results indicated three principal components (PC), PC1 having the greatest variance (45.83%) and affected by positive loadings of TDS, Cl-, SO42-, Na+, and Mg2+, PC2 accounting for 17.03% and dominated by Ca2+, pH, HCO3-, and K+, and PC3 representing 12.17% and mainly comprising of CO32-. High fluoride groundwater is of the SO4-Cl-Na type, followed by HCO3-Na type. Evaporation and ion exchange play important roles in producing high fluoride groundwater. Furthermore, saturation index and anthropogenic activities also promote the high fluoride concentrations. The values of the total hazard quotient of 93% groundwater samples were greater than 1 for infants, followed by 85% for children, 68% for teenagers, and 57% for adults. Non-carcinogenic health risks to infants may occur over the entire study area, while for adults, health risks are mainly found in Weinan and Pucheng. High fluorine may have a potential negative influence on neurodevelopment, especially for infants and children. Adults in this region have serious dental fluorosis and skeletal fluorosis because of long-term drinking of high fluoride groundwater. Therefore, measures, including using organic fertilizers, strengthening defluoridation process, and optimizing water supply strategies, are necessary in this area.
Collapse
Affiliation(s)
- Qiying Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Panpan Xu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Hui Qian
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China.
| | - Faxuan Yang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
14
|
Hydrogeochemical characteristics and evaluation of groundwater quality for domestic and irrigation purposes: a case study of the Heuningnes Catchment, Western Cape Province, South Africa. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03339-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Heavy Metals and Related Human Health Risk Assessment for River Waters in the Issyk-Kul Basin, Kyrgyzstan, Central Asia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103506. [PMID: 32429582 PMCID: PMC7277878 DOI: 10.3390/ijerph17103506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
The water resources of Central Asia play an important role in maintaining the fragile balance of ecosystems and the sustainable development of human society. However, the lack of research on the heavy metals in river waters has a far−reaching influence on public health and the sustainable development in Central Asia. In order to reveal the possible sources of the heavy metals and to assess the associated human health risks, thirty−eight water samples were collected from the rivers of the Issyk−Kul Basin during the period with low river flow (May) and the period with high river flow (July and August), and the hydrochemical compositions and major ions of heavy metals were analyzed. No changes in hydrochemical facies were observed between the two periods and the river water type was calcium bicarbonate. Carbonate dissolution and silicate weathering controlled the variation of cations and anions in river waters from the Issyk−Kul Basin. There were some differences in the sources of heavy metals in water bodies between the two periods. During the period with low river flow, heavy metals (Cr) were closely clustered with major ions, indicating that they were mainly affected by water–rock interactions. During the period with high river flow, all heavy metals studied in this paper had different sources of major ions, and the heavy metals maybe influenced by human activities. From the human health risk assessment, the hazard quotients for all samples were less than 1, reflecting that there was no noncarcinogenic risk in the river waters of the Issyk−Kul Basin during the two sampling periods. However, the water samples with carcinogenic risk of arsenic exceeding the threshold (10−4) accounted for 21.1% of the total, indicating that there were some certain carcinogenic hazards for human health via water drinking with direct oral ingestion. The results are of certain significance for the utilization and protection of water resources in the basin as well as the protection of public health.
Collapse
|
16
|
Rakib MA, Sasaki J, Matsuda H, Quraishi SB, Mahmud MJ, Bodrud-Doza M, Ullah AKMA, Fatema KJ, Newaz MA, Bhuiyan MAH. Groundwater salinization and associated co-contamination risk increase severe drinking water vulnerabilities in the southwestern coast of Bangladesh. CHEMOSPHERE 2020; 246:125646. [PMID: 31884226 DOI: 10.1016/j.chemosphere.2019.125646] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Household drinking water security is one of the major issues among coastal communities in Bangladesh. To examine the groundwater quality and social consequences, groundwater samples and household questionnaires were administered across the study area. Instrumental and statistical tools were used to analyze the water quality and social survey data. The average concentrations of electrical conductivity (EC) (7135.67 μS/cm), total dissolved solids (TDS) (3691 mg/L), Na+ (1569.51 mg/L), Ca2+ (289.5 mg/L), Mg2+ (340.51 mg/L), Cl- (2940.78 mg/L), F- (11.85 mg/L), NO3- (54.44 mg/L), NO2- (162.95 mg/L), PO43- (105.19 mg/L), Fe (4.9 mg/L), Mn (1.22 mg/L), As (16.55 μg/L), B (833.28 μg/L), and Pb (34.22 μg/L) were observed in groundwater, and exceeded the drinking water standards from 30% to 100% depending on the sampling location. Thus, the remarkably high contents of EC, TDS, Cl-, and Na+ represented possible saltwater intrusion along the coastal aquifer. The positive correlations between EC and trace and toxic elements indicated the potential influence of groundwater salinization on the dissolution of more chemical contaminants in the aquifer. These results showed that 100% of samples were unsuitable for drinking purposes. Severe drinking water scarcity is a serious issue, and local people have been affected by water-related diseases owing to the long-term consumption of contaminated water. Salinity problems in drinking water and related health diseases have increased significantly in the past several years. In addition, climate change and its associated hazards, including sea-level rise, cyclonic storm surges, flooding, and resulting inundation problems, have intensified the drinking water scarcity and health problems at the community level. To ensure household water security, environmental exposure, hydrogeology, and anthropogenic interventions must be considered to determine future sustainable water policies.
Collapse
Affiliation(s)
- M A Rakib
- Graduate Program in Sustainability Science, Global Leadership Initiative, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan; Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
| | - Jun Sasaki
- Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Hirotaka Matsuda
- Department of Agricultural Innovation for Sustainability, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi-shi, Kanagawa 243-0034, Japan
| | - Shamshad B Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Md Juel Mahmud
- International Centre for Climate Change and Development (ICCCAD) Dhaka, Bangladesh
| | - Md Bodrud-Doza
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - A K M Atique Ullah
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Konica J Fatema
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka, 1000, Bangladesh
| | - Md Asif Newaz
- Environmental Science Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Mohammad A H Bhuiyan
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
17
|
Chegbeleh LP, Akurugu BA, Yidana SM. Assessment of Groundwater Quality in the Talensi District, Northern Ghana. ScientificWorldJournal 2020; 2020:8450860. [PMID: 32327941 PMCID: PMC7171681 DOI: 10.1155/2020/8450860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022] Open
Abstract
A comprehensive chemical quality assessment of groundwater resources in the Talensi District has been conducted using conventional graphical methods and multivariate statistical techniques. The study sought to determine the main controls of groundwater chemistry and its suitability for domestic and irrigation purposes in the district. Silicate and carbonate mineral weathering were identified as the main controls on groundwater chemistry in the district, with reverse ion exchange also playing a role. High nitrate and lead levels observed have been associated with agrochemicals and wastewater from farms and homes. Three main flow regimes have been identified with Q-mode cluster analysis, in which mixed cation water types have been revealed, where areas designated as recharge zones are dominated by Na+ + K+-Mg2+-HCO3 - fresh water types characterised by low mineralisation and pH, which evolve into Mg2+- Na+ + K+- HCO3 - fresh water type with corresponding increased mineralisation of the groundwater. Based on the water quality index (WQI) technique modified for the district and an interpolation technique using ordinary kriging developed from a well-fitted exponential semivariogram for the estimated WQIs, the groundwater quality has been spatially classified as generally 'good' to 'excellent' for domestic purposes. Generally, the quality of groundwater for domestic usage deteriorates as one moves towards the north of the district, whereas waters in the east and west present the best quality. Classifications based on the United States Salinity Laboratory (USSL), Wilcox, and Doneen diagrams suggest that groundwater from the unconfined aquifers of the district is of excellent quality for irrigation purposes.
Collapse
Affiliation(s)
- Larry Pax Chegbeleh
- Department of Earth Science, University of Ghana, Box LG. 58, Legon, Accra, Ghana
| | - Bismark Awinbire Akurugu
- Department of Earth Science, University of Ghana, Box LG. 58, Legon, Accra, Ghana
- Council for Scientific and Industrial Research-Water Research Institute, Box M 32, Accra, Ghana
| | - Sandow Mark Yidana
- Department of Earth Science, University of Ghana, Box LG. 58, Legon, Accra, Ghana
| |
Collapse
|
18
|
Vetrimurugan E, Shruti VC, Jonathan MP, Roy PD, Sarkar SK, Rawlins BK, Villegas LEC. Comprehensive study on metal contents and their ecological risks in beach sediments of KwaZulu-Natal province, South Africa. MARINE POLLUTION BULLETIN 2019; 149:110555. [PMID: 31542597 DOI: 10.1016/j.marpolbul.2019.110555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 05/12/2023]
Abstract
Sediment metal concentrations were assessed in five different beach regions (n = 183) of KwaZulu-Natal (KZN) province in South Africa. Metal distribution revealed that Cr, Cu, Mo, Cd, Zn, Hg and As exceed the background upper continental crust values suggesting their anthropogenic origin (mining, agricultural and industrial) apart from natural geological inputs (gold placer deposits and heavy minerals). Various geochemical indices (Geoaccumulation index, Enrichment factor and Degree of contamination) confirmed that the sediment samples are extremely contaminated with Cr, Cd and Hg. Further, Hg and Cd were main contributors (60-90%) to the ecological threat in sediments. Hazard index estimated a high hazard potential of Hg in near future. Finally, present study together with our previous results portray the status of KZN coast with special significance to Hg contamination/enrichment. Thus, future researches are recommended to investigate the environmental and human health implications of mercury exposure in this coastal province.
Collapse
Affiliation(s)
- E Vetrimurugan
- Department of Hydrology, University of Zululand, Private Bag x1001, KwaDlangezwa 3886, South Africa
| | - V C Shruti
- Centro Mexicano para la Producción más Limpia (CMP+L), Instituto Politécnico Nacional (IPN), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico
| | - M P Jonathan
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico.
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, C.P. 04510, Del. Coyoacán, Ciudad de México, Mexico
| | - S K Sarkar
- Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - B K Rawlins
- Department of Hydrology, University of Zululand, Private Bag x1001, KwaDlangezwa 3886, South Africa
| | - Lorena Elizabeth Campos Villegas
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico
| |
Collapse
|
19
|
Elumalai V, Nwabisa DP, Rajmohan N. Evaluation of high fluoride contaminated fractured rock aquifer in South Africa - Geochemical and chemometric approaches. CHEMOSPHERE 2019; 235:1-11. [PMID: 31254776 DOI: 10.1016/j.chemosphere.2019.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/15/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The first systematic study on high fluoride contaminated fractured rock aquifer in South Africa using geochemical and chemometric approach is presented. Groundwater samples were collected from 49 boreholes and analysed for EC, pH, major and minor ions. The groundwater with high fluoride is associated with NaCl water types. The groundwater chemistry is governed by mineral weathering, evaporation and wastewater infiltration. PHREEQC modelling indicates that carbonate mineral saturation is decreasing with increasing salinity due to evaporation whereas fluorite saturation increases with increasing F being one of the prime controlling factors. Silicate minerals namely chalcedony, quartz and talc express saturation and over-saturation while chrysotile and sepiolite are undersaturated in most of the samples. PCA provided four factors and justified the role of mineral weathering, evaporation, ion exchange, longer residence time and anthropogenic impacts on water chemistry. R-mode and Q-mode cluster analysis resulted in four clusters. In cluster 1, (29%) of groundwater is less mineralized due to recent recharge. In cluster 2 (45%), groundwater chemistry is governed by weathering of silicates and fluorite minerals. Cluster 3 (20%) reveals the impact of anthropogenic activities and induced mineral weathering. Cluster 4 shows high EC, TDS, major ions, F and low HCO3 implying that groundwater is affected by evaporation and longer residence time promoting mineral-water interaction and precipitation of carbonate minerals. More than 50% of the study area is degraded due to fluoride contamination which requires proper remedial actions and further investigations on human health risk due to impact of fluoride contamination in groundwater is recommended.
Collapse
Affiliation(s)
| | - Dlamini P Nwabisa
- Department of Hydrology, University of Zululand, Kwa Dlangezwa, 3886, South Africa
| | - Natarajan Rajmohan
- Water Research Center, King Abdulaziz University, Jeddah, 21598, Saudi Arabia.
| |
Collapse
|
20
|
Tiwari AK, Pisciotta A, De Maio M. Evaluation of groundwater salinization and pollution level on Favignana Island, Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:969-981. [PMID: 31146317 DOI: 10.1016/j.envpol.2019.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Fifty-six groundwater samples were taken from the island of Favignana to evaluate the interaction between the groundwater and seawater, as well as the deterioration factors for the aquifers, using the combined hydrogeochemical and multivariate statistical approaches. Results show that the order of the groundwater chemistry in the study area was Na+> Ca2+>Mg2+>K+ and Cl->HCO3->SO42->NO3-. The groundwater samples were in the moderate saline zone to highly saline zone and indicate that the groundwater of the island of Favignana was recharged with seawater. The spatial distribution maps of Cl- and NO3- show that most of the groundwater samples had high concentrations of Cl- and NO3- in the study area. The ionic ratio diagrams, such as Na+/Cl- versus Cl-, Mg2+/Ca2+ versus Cl- and Ca2+/HCO3- versus Cl-, and other hydrogeochemical plots reveal that the groundwater chemistry of the study was primarily controlled by the seawater intrusion and reverse ion exchange process, with a small contribution from carbonate dissolution. Additionally, the NO3-/Cl- versus Cl- diagram and principal component analysis (PCA) show that the contamination of nitrate in the study area was due to human activities (i.e. agriculture and domestic sewage disposal). The outcome of the present research could be helpful for groundwater resource management in coastal environments.
Collapse
Affiliation(s)
- Ashwani Kumar Tiwari
- DIATI-Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Antonino Pisciotta
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Palermo, via La Malfa 153, 90146, Palermo, Italy
| | - Marina De Maio
- DIATI-Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
21
|
Groundwater Quality and Suitability for Different Uses in the Saloum Area of Senegal. WATER 2018. [DOI: 10.3390/w10121837] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogeochemical analyses were conducted on groundwater sampled from the Saloum aquifer, in southern Senegal. The objective was to identify the chemical processes that control hydrochemistry and to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Water samples were collected from 79 wells during the dry season in May 2012, and were subjected to analysis for chemical characteristics (major ions), pH, electrical conductivity (EC) and total dissolved solid (TDS). The dominant hydrochemical facies observed for the groundwater samples are NaCl and CaHCO3. Gibbs plot depicts predominance of rock water interaction and evaporation processes controlling the water chemistry. Percentage of Na+, Residual Sodium Carbonate (RSC), Total Hardness (TH) and Sodium Adsorption Ratio (SAR) values were calculated. The results were compared with the standard guideline values recommended by the World Health Organization and agricultural water standards. The TDS in groundwater is less than 1200 mg/L and SAR values are less than 10. RSC values overall are less than 1.25 meq/L. Results show that the groundwater in the area has generally a low hardness and is fresh (95%) to brackish. The majority of groundwater samples are appropriate for domestic uses. The indexes for water irrigation compared with standard limits revealed that most of the Saloum groundwater samples fall in the suitable range for irrigation.
Collapse
|