1
|
Sequeira MD, Castilho A, Tavares AO, Dinis P. The Rural Fires of 2017 and Their Influences on Water Quality: An Assessment of Causes and Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:32. [PMID: 36612354 PMCID: PMC9819191 DOI: 10.3390/ijerph20010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
As water is facing increasing pressures from population and economic growth and climate change, it becomes imperative to promote the protection, restoration and management of this resource and its watersheds. Since water quality depends on multiple factors both natural and anthropic, it is not easy to establish their influences. After the October 2017 fires that affected almost 30% of the Mondego hydrographic basin in Central Portugal, 10 catchments were selected for periodic physical-chemical monitoring. These monitoring campaigns started one month after the fires and lasted for two hydrological years, measuring the electric conductivity (EC), pH, dissolved oxygen (DO), turbidity (Turb), alkalinity (Alk), major and minor ions, and trace elements. The obtained data were then statistically analysed alongside the geomorphological characteristics of each catchment coupled with features of land-use and occupation. From the results, it was possible to establish that fire-affected artificial areas, through the atmospheric deposition and surface runoff of combustion products, had the most impact on surface water quality, increasing As, K-, Ca2+, Mg2+, NO3-, SO42- and Sr, and consequently increasing electrical conductivity. Agricultural land-use seems to play a major influence in raising the water's EC, Cl, K- and Na2+. Regarding natural factors such as catchment geology, it was found that the extent of igneous exposures influences As, and the carbonate sedimentary units are a source of Ca2+ and HCO32- concentrations and impose an increase in alkalinity. Rainfall seems, in the short term, to increase the water concentration in Al and NO3-, while also raising turbidity due to sediments dragged by surface runoff. While, in the long-term, rainfall reduces the concentrations of elements in surface water and approximates the water's pH to rainfall features.
Collapse
Affiliation(s)
- Mário David Sequeira
- Department of Earth Sciences, Centre for Social Studies, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Castilho
- Department of Earth Sciences, Geosciences Centre, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Alexandre Oliveira Tavares
- Department of Earth Sciences, Centre for Social Studies, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Pedro Dinis
- Department of Earth Sciences, MARE–Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
2
|
The influence of Strzelin Quarry Lakes on small reservoir retention resources in the regional catchments. Sci Rep 2022; 12:14642. [PMID: 36030270 PMCID: PMC9420110 DOI: 10.1038/s41598-022-18777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
The paper presents the results of the analysis of the volume of water retained in Strzelin Quarry Lakes (SQLs). The volume of retained water was estimated by using the computational method, where the proposed reduction factors were determined with the use of DTM (digital terrain model). 2.6 hm3 of water was retained in seventeen Strzelin Quarry Lakes, of which 1.2 hm3 in the Ślęza River catchment (3 quarry lakes), and 1.4 hm3 in the Oława River catchment (14 quarry lakes). The obtained data of the volume of water retained in SQLs were compared to the balance of the water retention capacity of water reservoirs in the catchments of the Ślęza River (0.809 hm3), part of the WR08 Bystrzyca balance catchments (16.190 hm3) and in the catchments of the Oława River (2.782 hm3), part of the WR09 Nysa Kłodzka balance catchment (104.960 hm3). Inclusion the volume of water retained in Strzelin Quarry Lakes in the small scale water retention (reservoirs and ponds) balance would increase the volume of retained water by 156.0% in the Ślęza catchment (by 7.8% in the WR08 Bystrzyca balance catchment) and by 49.5% in the Oława catchment (by 1,3% in the WR09 Nysa Kłodzka balance catchment). Under favorable hydrogeological and geomorphological conditions water reclamation of the excavations may be one of the main aspects of increasing the retention capacity of the catchment, what is particularly important in areas characterized by low water resources.
Collapse
|
3
|
ArcDrain: A GIS Add-In for Automated Determination of Surface Runoff in Urban Catchments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168802. [PMID: 34444560 PMCID: PMC8393597 DOI: 10.3390/ijerph18168802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Surface runoff determination in urban areas is crucial to facilitate ex ante water planning, especially in the context of climate and land cover changes, which are increasing the frequency of floods, due to a combination of violent storms and increased imperviousness. To this end, the spatial identification of urban areas prone to runoff accumulation is essential, to guarantee effective water management in the future. Under these premises, this work sought to produce a tool for automated determination of urban surface runoff using a geographic information systems (GIS). This tool, which was designed as an ArcGIS add-in called ArcDrain, consists of the discretization of urban areas into subcatchments and the subsequent application of the rational method for runoff depth estimation. The formulation of this method directly depends on land cover type and soil permeability, thereby enabling the identification of areas with a low infiltration capacity. ArcDrain was tested using the city of Santander (northern Spain) as a case study. The results achieved demonstrated the accuracy of the tool for detecting high runoff rates and how the inclusion of mitigation measures in the form of sustainable drainage systems (SuDS) and green infrastructure (GI) can help reduce flood hazards in critical zones.
Collapse
|
4
|
Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020. WATER 2021. [DOI: 10.3390/w13141955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.
Collapse
|
5
|
Dąbrowska J, Sobota M, Świąder M, Borowski P, Moryl A, Stodolak R, Kucharczak E, Zięba Z, Kazak JK. Marine Waste-Sources, Fate, Risks, Challenges and Research Needs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E433. [PMID: 33430467 PMCID: PMC7827083 DOI: 10.3390/ijerph18020433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
The article presents a comprehensive and cross-cutting review of key marine waste issues, taking into account: sources, fate, risks, transport pathways, threats, legislation, current challenges, and knowledge gaps. The growing amount of both human-created waste in seas and oceans and waste reaching marine ecosystems from land is one of today's challenges for the global economy and the European Union. It is predicted that if no decisive steps are taken to limit the amount of this type of waste, there may be more plastic waste than fish in the oceans after 2050. The influence of microplastics and nanoplastics on living organisms remains undiagnosed. Within the international and EU law, solutions are being developed to properly manage waste on board ships and to reduce the impact of processes related to the recycling of the vessels on the environment. Currently, over 80% of ships are dismantled in the countries of South Asia, in conditions that threaten the environment and the safety of workers. After World War 2, large quantities of chemical weapons were deposited in the seas. Steel containers with dangerous substances residing in the sea for over 70 years have begun leaking, thus polluting water. For many years, radioactive waste had also been dumped into marine ecosystems, although since 1993 there has been a total ban on such disposal of radionuclides. The impact of the COVID-19 pandemic on marine waste generation has also been presented as a significant factor influencing marine waste generation and management.
Collapse
Affiliation(s)
- Jolanta Dąbrowska
- Institute of Building Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| | - Marcin Sobota
- Institute of Landscape Architecture, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland;
| | - Małgorzata Świąder
- Institute of Spatial Management, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland; (M.Ś.); (J.K.K.)
| | - Paweł Borowski
- Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland;
| | - Andrzej Moryl
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland; (A.M.); (R.S.)
| | - Radosław Stodolak
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland; (A.M.); (R.S.)
| | - Ewa Kucharczak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Zofia Zięba
- Institute of Building Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland;
| | - Jan K. Kazak
- Institute of Spatial Management, Wrocław University of Environmental and Life Sciences, 50-357 Wrocław, Poland; (M.Ś.); (J.K.K.)
| |
Collapse
|
6
|
Bawiec A, Pawęska K, Pulikowski K. LED light use for the improvement of wastewater treatment in the hydroponic system. ENVIRONMENTAL TECHNOLOGY 2020; 41:2024-2036. [PMID: 30484745 DOI: 10.1080/09593330.2018.1554007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Effective removal of nitrogen and phosphorus from sewage before its discharge to the receiving water body is now a key task for scientists and technologists around the world. The widespread problem of eutrophication in the watercourses as well as in the seas and oceans obliges to take actions leading to more effective protection of water resources and implementation of sustainable development principles. One of the methods of increased wastewater treatment from nutrients is the use of a third stage of treatment with the use of macrophytes for the uptake of nitrogen and phosphorus. These systems, called hydroponic, under moderate climate conditions show little effectiveness due to the lack of sufficient light intensifying the growth of aquatic plants. The aim of this study was to evaluate the reduction of biogenic compounds concentrations in wastewater where additional lighting of plants was provided by the use of LED (Light Emitting Diodes), in two different conditions of experiment: with aeration and with carbon dioxide supplementation. Analyses show that the effectiveness of purification was higher in the wastewater supplemented with CO2 and artificial lighting had no significant influence on the reduction of nitrogen forms concentrations. In wastewater with aeration, higher effectiveness of nitrogen removal was observed in the tank with artificial lighting. In both cases, aeration or CO2 supplementation as well as artificial lighting or its lack, had no influence on total phosphorus and phosphates removal.
Collapse
Affiliation(s)
- Aleksandra Bawiec
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Pawęska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Pulikowski
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
7
|
A Study on the Relationship between Land Use Change and Water Quality of the Mitidja Watershed in Algeria Based on GIS and RS. SUSTAINABILITY 2020. [DOI: 10.3390/su12093510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many catchments in northern Algeria, including the coastal Mitidja Basin in the north central part of the country have been negatively affected by the deterioration of water quality in recent years. This study aims to discover the relationship between land use change and its impact on water quality in the coastal Mitidja river basin. Based on the data of land use and water quality in 2000, 2010 and 2017, the relationship between land use change and surface water quality index in the Mitidja Watershed was discussed through GIS and statistical analysis. The results show that the physical and chemical properties of the Mitidja river basin have obvious spatial heterogeneity. The water quality of upstream was better than that of downstream. There was a significant spatial relationship between the eight water quality indicators and three land use types, including urban residential land, agricultural land and vegetation. In most cases, settlements and agricultural land are the dominant factors leading to river pollution, and higher vegetation coverage helps to improve water quality. The regression model revealed that percentage of urban settlement area was a predictor for NH4-N, BOD5, COD, SS, PO4-P, DO and pH, while vegetation was a predictor for NO3-N. The analysis also showed that during this period, urban settlement areas increased sharply, which has a significant impact on water quality variables. Agricultural land only had a significant positive correlation with PO4-P. The results provide an effective way to evaluate river water quality, control water pollution and land use management by landscape pattern.
Collapse
|
8
|
Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow. SUSTAINABILITY 2019. [DOI: 10.3390/su11154201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents the results of the effects of control drainage (CD) on the groundwater table and subsurface outflow in Central Poland. The hydrologic model DRAINMOD was used to simulate soil water balance with drain spacing of 7 and 14 m, different initial groundwater Table 40, 60 and 80 cm b.s.l., and dates at the beginning of control drainage of 1 March, 15 March, 1 April, and 15 April. The CD restricts flow at the drain outlet to maintain a water table during the growing season. Simulations were made for the periods from March to September for the years 2014, 2017, and 2018, which were average, wet, and dry, respectively. The simulations showed a significant influence of the initial groundwater tables and date blocking the outflow from the drainage network on the obtained results. In the conditions of central Poland, the use of CD is rational only when it is started between 1 and 15 March. In this case, the groundwater table can be increased from 10 to 33 cm (7 m spacing) and from 10 to 41 cm (14 m spacing) in relation to the conventional system (free drainage—FD). In the case of blocking the outflow on 1 March, the reduction is about 80% on average in the period from March to September. With a delay in blocking the outflow, the impact of CDs decreases and ranges from 8% to 50%. Studies have shown that the proper use of the drainage network infrastructure complies with the idea of sustainable development, as it allows efficient water management, by reduction of the outflow and, thus, nitrates from agricultural areas. Furthermore, CD solutions can contribute to mitigating the effects of climate change on agriculture by reducing drought and flood risk.
Collapse
|
9
|
Monitoring of Landscape Transformations within Landscape Parks in Poland in the 21st Century. SUSTAINABILITY 2019. [DOI: 10.3390/su11082410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the most problematic forms of nature protection in Poland relates to landscape parks. They include the most valuable landscapes, but the areas within the landscape park still have economic uses. Therefore, the monitoring of landscape changes within landscape parks is necessary in order to properly manage these forms of protection. The main objective of the study was to monitor the scale and nature of landscape transformations within the boundaries of landscape parks in Poland during the period 2000–2018 and to assess the possibility of using the landscape change index (LCI) to monitor the intensity of landscape transformations within this type of protected area. Preliminary analyses of the transformations within all landscape parks in Poland showed an upward trend, both in terms of the number of types of identified landscape changes as well as their area. In spite of the large diversity and degree of transformation in landscape parks, several dominant processes can be observed. The largest number and area of changes during each of the analyzed periods were found in transformations within forest landscapes (temporary and permanent deforestation and forest maturation), which constitute the dominant type of land cover within most of the landscape parks. In open landscapes, changes mainly relate to afforestation and natural succession in meadows, pastures, and arable land, as well as the transformation of arable land into mining areas. Twelve case studies, covering all landscape parks in Lower Silesia, have shown that the LCI is an excellent tool for monitoring the intensity of landscape changes, but it is dependent on the accuracy of the source data. The analyses confirmed that, during the study periods, the changes in all 12 Lower Silesian landscape parks were at a low level, but their particular intensification took place in the years from 2012 to 2018. The highest LCI was found in the area where a natural disaster had occurred (air tornado), which destroyed huge areas of forest in landscape parks. After changes in the forest landscape, the most frequently identified type of change in 2006–2012 was the transformation of non-forest landscapes into forest landscapes. The main reason for such changes was the expansion of forest into abandoned arable land, meadows, and pastures. The use of the Corine Land Cover database to calculate the LCI and monitor the intensity of landscape change revealed a low usability of the database for the year 2000 and a high usability for data from 2006 to 2018.
Collapse
|
10
|
Nutrient Pollutants in Surface Water—Assessing Trends in Drinking Water Resource Quality for a Regional City in Central Europe. SUSTAINABILITY 2019. [DOI: 10.3390/su11071988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents the changes in concentration of seven biogenic indices in the Wisłok River water and determines the water treatment processes required in order to obtain water fit for consumption. The investigations were conducted during 2004–2013, and water samples were collected at a measuring-control point was situated at 67.9 km on the river at the surface water intake for the water supply to the Rzeszów city dwellers. Analysis of the research results allows for the forecasting of technological and organizational changes in the treatment processes of the abstracted water. It was found that only the mean concentration of Kjeldahl nitrogen exceeded the value admissible for class I, which allowed the Wisłok River water to be classified as class II with good potential and determined the water quality category as A2, which indicates the necessity for typical performance physical and chemical treatment. Downward trends in the contents of the tested nutrients occurred during the period of investigation, except for nitrite nitrogen. Statistically significant downward trends were registered for ammonium nitrogen, Kjeldahl nitrogen, total nitrogen and phosphates. The decline in nutrient concentrations in the water of Wisłok is a tangible result of the introduction of new standards of water resource management in the catchment, compliant with the European Union legislation.
Collapse
|
11
|
Kamińska JA. A random forest partition model for predicting NO 2 concentrations from traffic flow and meteorological conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:475-483. [PMID: 30243167 DOI: 10.1016/j.scitotenv.2018.09.196] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
High concentrations of nitrogen dioxide in the air, particularly in heavily urbanised areas, have an adverse effect on many aspects of residents' health (short-term and long-term damage, unpleasant odour and other). A method is proposed for modelling atmospheric NO2 concentrations in a conurbation, using a partition model M consisting of two separate models: ML for lower concentration values and MU for upper values. An advanced data mining technique, that of random forests, is used. This is a method based on machine learning, involving the simultaneous compilation of information from multiple random trees. Using the example of data recorded in Wrocław (Poland) in 2015-2017, an iterative method was applied to determine the boundary concentration y˜ for which the mean absolute deviation error for the partition model attained its lowest value. The resulting model had an R2 value of 0.82, compared with 0.60 for a classical random forest model. The importances of the variables in the model ML, similarly as in the classical case, indicate that the greatest influence on NO2 concentrations comes from traffic flow, followed by meteorological factors, in particular the wind direction and speed. In the model MU the importances of the variables are significantly different: while traffic flow still has the greatest impact, the effects of temperature and relative humidity are almost as great. This confirms the justifiability of constructing separate models for low and high pollution concentrations.
Collapse
Affiliation(s)
- Joanna A Kamińska
- Department of Mathematics, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland.
| |
Collapse
|
12
|
Bawiec A, Garbowski T, Pawęska K, Pulikowski K. Analysis of the Algae Growth Dynamics in the Hydroponic System with LEDs Nighttime Lighting Using the Laser Granulometry Method. WATER, AIR, AND SOIL POLLUTION 2019; 230:17. [PMID: 30679881 PMCID: PMC6323074 DOI: 10.1007/s11270-018-4075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The latest research focused on the analysis of algal growth and the dynamics of their growth use the laser diffraction technique, enabling determination of the volume fraction of suspended particles with specific diameters in aqueous solution as well as their fractal dimensions. This study focuses on the possibility of using a laser granulometer to assess the growth dynamics of algae growing in treated wastewater in a hydroponic system, supported by artificial lighting with the use of light-emitting diodes (LEDs). On the basis of the measurements, the fractal dimension (Df) of algae was determined. An attempt was made to apply the modified Avrami equation describing the crystallization process for the analysis of algae growth dynamics in wastewater. Presented results show that the fractal dimension of suspended matter, largely created by algae, in the case of additional lighting of the hydroponic system at night, takes lower values (Df ~ 1.0) than in sewage without additional light source (Df ~ 2.0). In each measurement series, the fractal dimension of particles in the tank with lighting in the end of the experiment was about 33-43% lower than in the tank without LEDs. The analysis of changes in particle diameters calculated on the basis of Avrami equation largely corresponds with the stages of algae growth. During the measurement series with lower air temperatures, the growth of algae in the tank with additional light was faster than in the tank without LEDs. The obtained information can be the basis for determining the effective method of removing algae from wastewater treated in the hydroponic system, before they are discharged to the receiver in order to prevent the outflow of increased concentrations of total suspended solids.
Collapse
Affiliation(s)
- A. Bawiec
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 24 Grunwaldzki Sq., 50-363 Wrocław, Poland
| | - T. Garbowski
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 24 Grunwaldzki Sq., 50-363 Wrocław, Poland
| | - K. Pawęska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 24 Grunwaldzki Sq., 50-363 Wrocław, Poland
| | - K. Pulikowski
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 24 Grunwaldzki Sq., 50-363 Wrocław, Poland
| |
Collapse
|
13
|
The Development of a Novel Decision Support System for the Location of Green Infrastructure for Stormwater Management. SUSTAINABILITY 2018. [DOI: 10.3390/su10124388] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In order to maximise the benefits of green infrastructure in a city’s structure for urban adaptation to climate change, there is a need to support decision-makers in the urban design domain with adequate information that would help them to locate such green infrastructure in the most suitable places. Therefore, the aim of this study was to develop a novel decision support system (DSS) for the location of green infrastructure. The goal of the designed solution is to inform users about the location of urban hydrological sinks, which gather stormwater in urban watersheds, and the amount of water which could accumulate in each location depending on the defined precipitation and the soil’s moisture conditions. The designed DSS is based on a multicomponent methodology including both atmospheric and soil conditions. The DSS was tested using a sample that presents the results of stormwater accumulation calculations. The obtained results show which green areas are the most suitable locations for green infrastructure solutions and which facility is optimal because of its retention abilities and amount of accumulated stormwater. The application of the designed DSS allows us to maximise the benefits of the implementation of green infrastructure within the existing urban land use. The fully editable component of hydrological conditions allows for testing projections of the potential amount of accumulated water in different precipitation scenarios. The study provides a DSS for use by local authorities which enables them to concentrate actions in order to better adapt cities to climate change and environmental extremes.
Collapse
|
14
|
Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China. SUSTAINABILITY 2018. [DOI: 10.3390/su10114093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spanning the Yangtze River of China, the Three Gorges Dam (TGD) has received considerable concern worldwide with its potential impacts on the downstream side of the dam. This work investigated the spatio-temporal variations of suspended sediment concentration (SSC) at the downstream section of Yichang-to-Chenglingji from 2002 to 2015. A random forest model was developed to estimate SSC using MODIS ground reflectance products, and the spatio-temporal distributions of SSC were retrieved with this model to investigate the characteristics of water-silt variation. Our results revealed that, relatively, SSC before 2003 was evenly distributed in the downstream Yangtze River, while this spatial distribution pattern changed ce 2003 when the dam started storing water. Temporally, the SSC demonstrated a W-shaped curve of seasonal variation as one peak occurred in September and two troughs in March and November, and showed a significantly decreasing trend after three-stage impoundment. After official operation of the TGD in 2009, the SSC was reduced by over 40% than before 2003. Spatially, the most significant changes occurred in the upper Jingjiang section, where the SSC dropped by 45%. During all stages of impoundment, the water impoundment to 135 m in 2003 had the most significant impact on suspended sediment. The decreased SSC has led to emerging risks of bank failure, aggravated erosion of water front and aggressive down-cutting erosion along the downstream of the dam, as well as other ecological and environmental issues that require urgent attention by the government.
Collapse
|
15
|
SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS. ENERGIES 2018. [DOI: 10.3390/en11082105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global Sustainable Development Goals influence the implementation of energy development strategies worldwide. However, in order to support local stakeholders in sustainable energy development strategies and climate change adaptation plans and the implementation of policies, there is a need to equip local decision makers with tools enabling the assessment of sustainable energy investments. In order to do so, the aim of this study is to create a novel tool for the assessment of solar radiation (SOLIS) in ArcGIS. The SOLIS tool builds on the existing ArcGIS algorithm by including input data conversion and post-processing of the results. This should expand the group of potential users of solar radiation analyses. The self-filtering tool excludes surfaces that are not suitable for solar energy investments due to geometrical reasons. The reduction of the size of the output data is positive for technical reasons (speed of the calculation and occupied storage place) and for cognitive reasons (reduction of the number of objects necessary to analyse by the user). The SOLIS tool limits the requirement for users to insert three-dimensional (3D) models of roofs (with any geometry) and select solar radiation calculation periods. The highlight of this research is to develop the decision support tool for the assessment of solar radiation, which would reduce the requirements for potential users, in order to promote indicator-based assessments among non-Geographical Information Systems (GIS) specialists.
Collapse
|