1
|
Zhang P, Long H, Li Z, Chen R, Peng D, Zhang J. Effects of typhoon events on coastal hydrology, nutrients, and algal bloom dynamics: Insights from continuous observation and machine learning in semi-enclosed Zhanjiang Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171676. [PMID: 38479535 DOI: 10.1016/j.scitotenv.2024.171676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Typhoons can induce variations in hydrodynamic conditions and biogeochemical processes, potentially escalating the risk of algal bloom occurrences impacting coastal ecosystems. However, the impacts of typhoons on instantaneous changes and the mechanisms behind typhoon-induced algal blooms remain poorly understood. This study utilized high-frequency in situ observation and machine learning model to track the dynamic variations in meteorological, hydrological, physicochemical, and Chlorophyll-a (Chl-a) levels through the complete Typhoon Talim landing in Zhanjiang Bay (ZJB) in July 2023. The results showed that a delayed onset of algal bloom occurring 10 days after typhoon's arrival. Subsequently, as temperatures reached a suitable range, with an ample supply of nutrients and water stability, Chl-a peaked at 121.49 μg L-1 in algal bloom period. Additionally, water temperature and air temperature decreased by 1.61 °C and 2.8 °C during the typhoon, respectively. In addition, wind speed and flow speed increased by 1.34 and 0.015 m s-1 h-1 to peak values, respectively. Moreover, the slow decline of 8.2 % in salinity suggested a substantial freshwater input, leading to an increase in nutrients. For instance, the mean DIN and DIP were 2.2 and 8.5 times higher than those of the pre-typhoon period, resulting in a decrease in DIN/DIP (closer to16) and the alleviation of P limitation. Furthermore, pH and dissolved oxygen (DO) were both low during the typhoon period and then peaked at 8.93 and 19.05 mg L-1 during the algal bloom period, respectively, but subsequently decreased, remaining lower than those of the pre-typhoon period. A preliminary learning machine model was established to predict Chl-a and exhibited good accuracy, with R2 of 0.73. This study revealed the mechanisms of eutrophication status formation and algal blooms occurrence in the coastal waters, providing insights into the effects of typhoon events on tropical coastal biogeochemistry and ecology.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Huizi Long
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhihao Li
- Guangzhou Heston Electronic Technology Co., Ltd., Guangzhou 511447, China
| | - Rong Chen
- Guangzhou Heston Electronic Technology Co., Ltd., Guangzhou 511447, China
| | - Demeng Peng
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jibiao Zhang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Peng D, Zhang J, Fan C, Zhu B, Fu M, Zhang P. Effects of terrestrial input on heavy metals in Zhanjiang Bay, a typical subtropical bay in the South China Sea. MARINE POLLUTION BULLETIN 2024; 199:116015. [PMID: 38217917 DOI: 10.1016/j.marpolbul.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Understanding the influence of terrestrial inputs on heavy metals in bays is crucial for the environmental protection of regional estuaries and coastal systems. In this study, the concentrations, temporal and regional distribution characteristics, and fluxes of heavy metals (Cr, Cu, Zn, Cd, Pb) in the surface seawater and terrestrial sewage of Zhanjiang Bay (ZJB) in four different seasons were investigated. The results identified the heavy metal concentrations in the sewage outlet around ZJB had significant seasonal variation. The heavy metals in the surface seawater of ZJB had significant spatiotemporal variations. Terrestrial input, biological activity and hydrodynamics affected the overall distribution. The heavy metal emission fluxes indicated that riverine input was the main influencing factor for heavy metals in ZJB (96.22 %). The fluxes of heavy metals into ZJB increased significantly after the typhoon (Cu: 127 %, Zn: 63 %, Pb: 136 %), it was possible to deteriorate the seawater quality.
Collapse
Affiliation(s)
- Demeng Peng
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088
| | - Jibiao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088..
| | - Chuping Fan
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088
| | - Bo Zhu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088
| | - Miaojian Fu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088
| | - Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088..
| |
Collapse
|
3
|
Sensitive determination of urea in luciferin chemiluminescence system using an experimental design. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Microplastic Variations in Land-Based Sources of Coastal Water Affected by Tropical Typhoon Events in Zhanjiang Bay, China. WATER 2022. [DOI: 10.3390/w14091455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increasingly serious microplastic pollution in coastal areas and the ecological threats associated with plastics have attracted global attention. The frequency and intensity of typhoons have increased owing to global warming, strongly influencing the distribution and composition of microplastics in coastal ecosystems. In this study, the abundance, composition, diversity, and flux of microplastics in three estuaries and one sewage outlet in Zhanjiang Bay (ZJB) were analyzed. The average abundance of microplastics from land-based sources increased 3.6-fold from 14.19 ± 3.60 items/L before Typhoon Kompasu to 51.19 ± 28.53 items/L after the typhoon (p < 0.05). In addition, the proportion of fiber and large microplastics increased after the typhoon. In all samples, microplastics 100–330 μm in size were predominant, and blue was the most abundant color. The diversity in the color and size of microplastics increased after Typhoon Kompasu. The total daily flux of microplastics at the four stations entering ZJB was 3.95 × 1011 items before the typhoon and 9.93 × 1011 items after the typhoon, showing a 2.5-fold increase. This study demonstrated the influence of Typhoon Kompasu on microplastics from land-based sources of ZJB coastal waters and provided vital data for further study on MP pollution in coastal water ecosystems and the impact of typhoons on microplastics.
Collapse
|
5
|
Seasonal Distribution, Composition, and Inventory of Plastic Debris on the Yugang Park Beach in Zhanjiang Bay, South China Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084886. [PMID: 35457751 PMCID: PMC9032269 DOI: 10.3390/ijerph19084886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Plastic debris contamination in marine environments is a global problem that poses a considerable threat to the sustainability and health of coastal ecosystems. Marine beaches, as the key zones where terrestrial plastic debris reach coastal waters, are faced with the increasing pressures of human activities. In this study, we explored the distribution, composition, and inventory of plastic debris over seasonal and tidal zones at the Yugang Park Beach (YPB) in Zhanjiang Bay, South China Sea, to provide a baseline for plastic debris on a marine beach. The results showed mean abundance of plastic debris in summer (6.00 ± 2.10 items/m2) was significantly greater than that in winter (3.75 ± 2.12 items/m2). In addition, the composition of plastic debris ranged in size mainly from 1 to 5 mm and 0.5 to 2.5 cm in winter and summer, respectively. In terms of composition, white plastic debris was the most common (81.1%), and foam was the most abundant (64.4%). Moreover, there was a significant relationship between the abundance of plastic debris and sand grain size fraction (p < 0.05), implying the abundances of microplastic debris were more easily impacted by sand grain size (>2 mm). In total inventory, there were about 1.18 × 105 and 2.95 × 105 items of plastic debris on the YPB in winter and summer, respectively. The tidal variation and human activities are responsible for the plastic debris accumulation. This study provided a method to quantify the inventory of plastic debris on a beach and could be helpful to consider regional tidal variations and critical source areas for effective plastic debris clean-up.
Collapse
|
6
|
Sridhar V, Park H. Coordination Polymer Framework-Derived Ni-N-Doped Carbon Nanotubes for Electro-Oxidation of Urea. MATERIALS 2022; 15:ma15062048. [PMID: 35329497 PMCID: PMC8955885 DOI: 10.3390/ma15062048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical oxidation of urea (UOR) is critical in the removal of urea from wastewater and energy conservation and storage. Nickel-based catalysts are widely used for urea-ORR, but in all cases, the nickel must be hybridized with carbon materials to improve its conductivity. In this manuscript, we demonstrate the synthesis of a nickel-decorated carbon nanotube (Ni-NCNT) by simple microwave pyrolysis of Dabco (1,4-diazabicyclo[2.2.2]octane)-based coordination polymer frameworks (CPF). The surface structure, morphology and chemical composition of Ni-NCNT were characterized by Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy (EDS) analysis. SEM studies showed micrometer-long bamboo-shaped CNTs with nickel nanoparticles anchored to the walls and inside the nanotubes. A structural study by TEM and Raman spectra showed that carbon nanotubes are rich in defects due to the presence of nitrogen, and this was confirmed by energy-dispersive X-ray spectroscopy (EDS) maps. When applied as electrocatalysts in urea oxidation reactions (UOR), our newly developed Ni-NCNT shows excellent electrocatalytic activity and stability, making it a versatile catalyst in energy generation and mitigating water contamination.
Collapse
Affiliation(s)
- Vadahanambi Sridhar
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
| | - Hyun Park
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2730
| |
Collapse
|
7
|
Critical Analysis for Life Cycle Assessment of Bio-Cementitious Materials Production and Sustainable Solutions. SUSTAINABILITY 2022. [DOI: 10.3390/su14031920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this study is to study the life cycle assessment of biocementitious materials production in comparison to traditional cement materials production. The environmental impact of production processes over the life cycle was evaluated on the basis of global warming and ozone depletion, human health, land, freshwater, marine ecotoxicity, and natural water system eutrophication. LCA uses endpoint methods (ECO indicators) and SimaPro 8 software to assess the health and environmental impact of raw materials used in the production process, including cement, Ca(NO3)2·4H2O, urea, molasses, and electricity. The results showed that cement materials made 82.88% of the world’s warming in all raw materials used in production processes, 87.24% of the world’s health, 89.54% of the deforestation of freshwater, and 30.48% to marine eutrophication. Ca(NO3)2·4H2O contributes by 58.88% to ozone depletion, 15.37 to human carcinogenic toxicity, 3.19% to freshwater eutrophication, and 11.76% to marine eutrophication. In contrast, urea contributes 38.15% to marine eutrophication and 5.25% to freshwater eutrophication. Molasses contribute by 13.77% to marine eutrophication. Cement contributes 74.27% to human health damage, 79.36% to ecosystem damage; Ca(NO3)2·4H2O contributes 13.54% to human health damage and 9.99% to ecosystem damage; while urea contributes 6.5% to human health damage and 5.91% to ecosystem damage. Bio-cementitious wastewater should undergo a treatment process to remove urea and molasses residues, as well as nitrates, before final disposal into the environment.
Collapse
|
8
|
Wang X, Song H, Wang Y, Chen N. Research on the biology and ecology of the harmful algal bloom species Phaeocystis globosa in China: Progresses in the last 20 years. HARMFUL ALGAE 2021; 107:102057. [PMID: 34456018 DOI: 10.1016/j.hal.2021.102057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Chinese researchers have made substantial progresses in research on the harmful algal bloom (HAB) species Phaeocystis globosa since the first P. globosa bloom outbreak in the Chinese coastal waters in 1997. However, as many results, especially the earlier ones, were published in non-English literature, much of the research on P. globosa biology, ecology, and biogeochemistry made by Chinese researchers have been unknown to colleagues from other countries. We review current knowledge on taxonomy, morphology, genetics, physiology, survival strategies and mitigation of P. globosa gained by Chinese researchers from the past two decades. P. globosa is the only Phaeocystis species that causes blooms in the Chinese waters, although other Phaeocystis species including P. jahnii and P. cordata have been detected in Chinese coastal regions. P. globosa has a complex life history with at least two morphotypes including a haploid flagellate and a diploid colonial cell. Colonial P. globosa blooms typically occur in winter after a diatom bloom in coastal waters of the South China Sea. P. globosa in Chinese coastal waters usually has extremely large colonial sizes, up to 3 cm in diameter, an order of magnitude greater than that observed in European coastal waters. The development of giant colonies is associated with enhanced sinking rate, limited nutrient diffusion, as well as decreased stability of colonies. The Chinese P. globosa strains also showed strong genetic diversity and physiological plasticity, being able to grow and develop into colonies at higher temperature and irradiance relative to that in European waters. High genetic diversity of P. globosa was revealed by developing high-resolution and high-specificity molecular markers including Phaeocystis globosa chloroplast 1 (pgcp1). Due to the severe impact of P. globosa on ecology and economy, much effort has been made to mitigate P. globosa blooms including the application of modified clays. Overall, P. globosa in the Chinese waters demonstrate unique genetic, phenotypical and physiological features that differ from P. globosa in other ocean regions. Further studies are needed to explore how environmental factors trigger the occurrence of P. globosa blooms and ascertain the impact of P. globosa blooms on the environment.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada.
| |
Collapse
|
9
|
Zhang P, Dai P, Zhang J, Li J, Zhao H, Song Z. Spatiotemporal variation, speciation, and transport flux of TDP in Leizhou Peninsula coastal waters, South China Sea. MARINE POLLUTION BULLETIN 2021; 167:112284. [PMID: 33765621 DOI: 10.1016/j.marpolbul.2021.112284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) plays key role in phytoplankton primary production in coastal water. In this study, seawater samples collected within China's Leizhou Peninsula coastal waters from October 2017 to July 2018 were examined to determine the seasonal variation, speciation, and transport flux of total dissolved phosphorus (TDP) linked to hydrographic features. TDP concentration and speciation had significant seasonal variations (P < 0.01), and the annual mean TDP concentration was 0.42 ± 0.25 μmol·L-1. High concentrations of TDP occurred in coastal waters adjacent to Zhanjiang Bay and Jianjiang River estuary, whereas low TDP concentrations were found across large offshore areas. Dissolved inorganic and organic P were the main TDP bulk species in different seasons, comprising up to 55.5 ± 7.9% and 46.5 ± 22.6%, respectively. The Beibu Gulf was annually subjected to 3.5 × 109 mol flux of TDP through the Qiongzhou Strait. Coastal currents, river plumes, and human activities were responsible for the dynamic variations in P species.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Peidong Dai
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China; Guangzhou Chinese Academy of Sciences Test Technical Services, Co., Ltd., Guangdong, Guangzhou 510000, China
| | - Jibiao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China.
| | - Jianxu Li
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Hui Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| | - Zhiguang Song
- College of Chemistry and Environmental Science, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
| |
Collapse
|
10
|
Spatiotemporal Dissolved Silicate Variation, Sources, and Behavior in the Eutrophic Zhanjiang Bay, China. WATER 2020. [DOI: 10.3390/w12123586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissolved silicate (DSi) is an important nutrient in coastal water, which is used by planktonic diatoms for cell division and growth. In this study, surface water samples were collected in the eutrophic Zhanjiang Bay (ZJB) in 2019, covering a seasonal variation of coastal water and land-based source water discharge. The spatiotemporal DSi distribution, land-based sources flux input and behaviors in ZJB were studied and discussed. The results show that the DSi concentration had significant differences in spatiotemporal scale. The average concentration of DSi in ZJB was 38.00 ± 9.48 μmol·L−1 in spring, 20.23 ± 11.27 μmol·L−1 in summer, 12.48 ± 1.42 μmol·L−1 in autumn and 11.96 ± 4.85 μmol·L−1 in winter. The spatiotemporal DSi distribution showed a decreasing gradient from the top to the mouth of ZJB, which was affected by land source inputs and hydrodynamics. The land-based sources’ input concentration of DSi in ZJB ranged from 0.021 to 0.46 mol·L−1, with an average of 0.14 mol·L−1, and the total annual flux of DSi was 1.06 × 109 mol, comprising up to 8.28%, 41.55% and 50.17% in dry, normal, and wet seasons, respectively. The Suixi River contributed the highest DSi flux proportion in all seasons. The DSi in land-based source water was mainly affected by water flow discharge, diatom uptake and impacts from anthropogenic activities. Compared with dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP), the DSi was the limitation nutrient in ZJB. Additionally, the DSi concentration in the coastal water was negatively correlated with salinity. The seasonal DSi/DIN and DSi/DIP ratios in land-based sources discharge water was significantly higher than that in coastal water (p < 0.05). Land-based sources of DSi input played an important role in nutrients composition that sustained diatoms as the dominant species in ZJB.
Collapse
|
11
|
Occurrence, Composition, and Relationships in Marine Plastic Debris on the First Long Beach Adjacent to the Land-Based Source, South China Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8090666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Land-based sources are the key sources of plastic debris, and mismanaged plastic debris can eventually enter the ocean via marine beaches. In this study, the spatial distribution and amount of plastic debris in the land-based source input zone of First Long Beach (FLB), China, which is a major tourist attraction, were first investigated. By using field investigation, sand samples were collected from two sections on FLB adjacent to land-based sources in December 2019, and the plastic debris in the sand samples was quantified and characterized in the laboratory. The amount of plastic debris ranged from 2 to 82 particles/m2 on this marine sand beach. There was a significant difference in plastic debris amount between the transects along the land-based source input zone (p < 0.05) due to the impacts of wind, ocean currents, and waves. The most abundant size of plastics was 0.5–2.5 cm (44.4%). Moreover, the most common color was white (60.9%). The most abundant shape of plastic debris fell into the fragment category (76.2%). The plastic debris amounts were significantly correlated with multiple sizes. Our results show that land-based wastewater discharge is a large plastic debris source on FLB under coastal water tide variation. Reduction strategies should be carried out by tracing the various land-based sources of plastic debris.
Collapse
|