1
|
Veselská V, Magherini L, Bianco C, Šembera J, Parma P, Víchová V, Sethi R, Filip J. Unveiling trends in migration of iron-based nanoparticles in saturated porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122552. [PMID: 39378815 DOI: 10.1016/j.jenvman.2024.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Nanoscale zero-valent iron (nZVI) particles are routinely used for environmental remediation, but their transport dynamics in different settings remain unclear, hindering optimization. This study introduces a novel approach to predicting nZVI transport in saturated porous model environment. The method employs advanced long column devices for real-time monitoring via controlled magnetic susceptibility measurements. Numerical modeling with a modified version of the MNMs 2023 software was then used to predict nZVI and its derivatives mobility in field-like conditions, offering insights into the radius of influence (ROI) and shape factor (SF) of their distribution. A standard nZVI precursor was compared with its four major commercial derivatives: nitrided, polyacrylic acid-coated, oxide-passivated, and sulfidated nZVI. All these iron-based nanoparticles exhibited identical particle sizes, morphologies, surface areas, and phase compositions, isolating surface properties, dominated by charge, as the sole variable affecting their mobility. The study revealed optimal transport when the surface charge of nZVI and its derivatives was strongly negative, while rapid aggregation of nZVI derivatives due magnetic attraction reduced their mobility. Modeling predictions based on column scale-up, indicated that detectable concentrations of 20 g L⁻1 were found at distances ranging from 0.4 to 1.1 m from the injection well. Slightly sulfidated nZVI traveled farther than the nZVI precursor and ensured more homogenous particle distribution around the well. Organically modified nZVI migrated the longest distances but showed particle accumulation close to the injection point. The findings suggest that minimal sulfidation combined with organic modification of nZVI surfaces may effectively enhance radial and vertical nZVI distribution in aquifers. Such improvements increase the commercial viability of modified nZVI, reduce their adverse impacts, and boosts their practical applications in real-world scenarios.
Collapse
Affiliation(s)
- Veronika Veselská
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Leonardo Magherini
- Department of Environment, Land, And Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| | - Carlo Bianco
- Department of Environment, Land, And Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| | - Jan Šembera
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Petr Parma
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec, Czech Republic
| | - Viktorie Víchová
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic; Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 779 00, Olomouc, Czech Republic
| | - Rajandrea Sethi
- Department of Environment, Land, And Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| | - Jan Filip
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
2
|
Dutta M, Banerjee S, Mandal M, Bhattacharjee M. A self-healable metallohydrogel for drug encapsulations and drug release. RSC Adv 2023; 13:15448-15456. [PMID: 37223407 PMCID: PMC10201648 DOI: 10.1039/d3ra00930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
A self-healable metallohydrogel (MOG) of Mn(ii) has been prepared using a low molecular weight gelator, Na2HL {H3L = l-(3,5-di-tert-butyl-2-hydroxy-benzyl)amino aspartic acid}. The MOG has been characterized by MALDI TOF mass spectrometry, rheological studies, IR spectroscopy, and microscopic techniques. Non-steroidal anti-inflammatory drug (NSAID), indomethacin (IND) and anti-cancer drug gemcitabine (GEM) were encapsulated into the metallohydrogel. The GEM-loaded metallogel (MOG_GEM) shows better delivery and more adverse cytotoxicity than the drug against breast cancer cell lines MDA-MB-468 and 4T1. The anti-cancer property was evaluated with in vitro MTT cytotoxic assay, live-dead assay and cell migration assay. In vitro cytotoxicity assay against RAW 264.7 cell line with the treatment of MOG_IND shows the improved anti-inflammatory response in the case of MOG_IND compared to the drug alone.
Collapse
Affiliation(s)
- Mita Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302 India
| | - Shreya Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302 India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302 India
| | | |
Collapse
|
3
|
Fopa RD, Bianco C, Archilha NL, Moreira AC, Pak T. A pore-scale investigation of the effect of nanoparticle injection on properties of sandy porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 253:104126. [PMID: 36731292 DOI: 10.1016/j.jconhyd.2022.104126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Nanoremediation is a new groundwater remediation technology in which nanoparticles (NPs) are injected into the sub-surface to promote in-situ degradation of aquifer contaminants. Although nanoremediation is an effective process to eliminate contaminants in-situ, its success relies on sufficiently mobile NPs that can reach the contaminated zones and remain there to facilitate chemical degradation of contaminants. Therefore, understanding the main parameters that control the mobility and retention of NPs in saturated porous media is a key component of designing a successful nanoremediation process. This work presents the outcome of a pore-scale study of nZVI NP (zero-valent iron) transport in sandy porous media using the non-destructive 3D imaging technique, X-ray computed micro-tomography (X-ray micro-CT). We investigate the effect of grain size (fine, coarse, carbonate and mixed sand) and composition (carbonate vs sand grains) on the mobility and retention of NPs in sand columns. To achieve this, we used four columns packed with grains of different sizes and compositions. The main contribution of this work is, therefore, to understand the effect of NP injection on the structural and geometric properties of sandy porous media and to identify the main pore-scale mechanisms controlling NP transport and entrapment. Our experiment shows that the pore geometries change because of NP injection. Pore clogging is evidenced through pore size and throat size distribution displaying a shift to the left with a noticeable reduction in pore connectivity in all the columns. The porosity and permeability of the columns studied display significant reduction as result of the NP injection.
Collapse
Affiliation(s)
- Raoul Djou Fopa
- School of Computing, Engineering & Digital Technologies, Teesside University, United Kingdom.
| | - Carlo Bianco
- Department of Environment, Land, and Infrastructure Engineering, Politecnico di Torino, Italy
| | - Nathaly Lopes Archilha
- Brazilian Synchrotron Light Laboratory, Brazilian Canter for Research in Energy and Materials, Brazil
| | - Anderson Camargo Moreira
- LMPT Laboratory, Mechanical Engineering Department, Federal University of Santa Catarina, Brazil
| | - Tannaz Pak
- School of Computing, Engineering & Digital Technologies, Teesside University, United Kingdom
| |
Collapse
|
4
|
Pulido-Reyes G, Magherini L, Bianco C, Sethi R, von Gunten U, Kaegi R, Mitrano DM. Nanoplastics removal during drinking water treatment: Laboratory- and pilot-scale experiments and modeling. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129011. [PMID: 35643007 DOI: 10.1016/j.jhazmat.2022.129011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastics detected in potable water sources and tap water have led to concerns about the efficacy of current drinking water treatment processes to remove these contaminants. It is hypothesized that drinking water resources contain nanoplastics (NPs), but the detection of NPs is challenging. We, therefore, used palladium (Pd)-labeled NPs to investigate the behavior and removal of NPs during conventional drinking water treatment processes including ozonation, sand and activated carbon filtration. Ozone doses typically applied in drinking water treatment plants (DWTPs) hardly affect the NPs transport in the subsequent filtration systems. Amongst the different filtration media, NPs particles were most efficiently retained when aged (i.e. biofilm coated) sand was used with good agreements between laboratory and pilot scale systems. The removal of NPs through multiple filtration steps in a municipal full-scale DWTP was simulated using the MNMs software code. Removal efficiencies exceeding 3-log units were modeled for a combination of three consecutive filtration steps (rapid sand filtration, activated carbon filtration and slow sand filtration with 0.4-, 0.2- and 3.0-log-removal, respectively). According to the results from the model, the removal of NPs during slow sand filtration dominated the overall NPs removal which is also supported by the laboratory-scale and pilot-scale data. The results from this study can be used to estimate the NPs removal efficiency of typical DWTPs with similar water treatment chains.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | - Leonardo Magherini
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Rajandrea Sethi
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland; School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Environmental Systems Science Department, ETH Zurich, 8092, Zurich, Switzerland
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
5
|
Beryani A, Bianco C, Casasso A, Sethi R, Tosco T. Exploring the potential of graphene oxide nanosheets for porous media decontamination from cationic dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127468. [PMID: 34688001 DOI: 10.1016/j.jhazmat.2021.127468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) nanosheets, often embedded in nano-composites, have been studied as promising materials for waste water purification, in particular to adsorb heavy metals and cationic organic contaminants. However, a broader range of potential applications of GO is still unexplored. This work investigated the potential applicability of GO for enhanced in-situ soil washing of secondary sources of groundwater contamination (i.e. the controlled recirculation of a washing GO suspension via injection/extraction wells). The laboratory study aimed at quantifying the capability of GO to effectively remove adsorbed methylene blue (MB) from contaminated sand. The tests were conducted in simplified conditions (synthetic groundwater at NaCl concentration of 20 mM, silica sand) to better highlight the key mechanisms under study. The results indicated a maximum sorption capacity of 1.6 mgMB/mgGO in moderately alkaline conditions. Even though the adsorption of MB onto GO slightly reduced the GO mobility in the porous medium, a breakthrough higher than 95% was obtained for MB/GO mass ratios up to 0.5. This suggests that a very high recovery of the injected particles should be also expected in the field.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Alessandro Casasso
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Rajandrea Sethi
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Tiziana Tosco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy).
| |
Collapse
|
6
|
Zhu X, Zhou L, Li Y, Han B, Feng Q. Rapid Degradation of Carbon Tetrachloride by Microscale Ag/Fe Bimetallic Particles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2124. [PMID: 33671627 PMCID: PMC7931072 DOI: 10.3390/ijerph18042124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/24/2022]
Abstract
Cost-effective zero valent iron (ZVI)-based bimetallic particles are a novel and promising technology for contaminant removal. The objective of this study was to evaluate the effectiveness of CCl4 removal from aqueous solution using microscale Ag/Fe bimetallic particles which were prepared by depositing Ag on millimeter-scale sponge ZVI particles. Kinetics of CCl4 degradation, the effect of Ag loading, the Ag/Fe dosage, initial solution pH, and humic acid on degradation efficiency were investigated. Ag deposited on ZVI promoted the CCl4 degradation efficiency and rate. The CCl4 degradation resulted from the indirect catalytic reduction of absorbed atomic hydrogen and the direct reduction on the ZVI surface. The CCl4 degradation by Ag/Fe particles was divided into slow reaction stage and accelerated reaction stage, and both stages were in accordance with the pseudo-first-order reaction kinetics. The degradation rate of CCl4 in the accelerated reaction stage was 2.29-5.57-fold faster than that in the slow reaction stage. The maximum degradation efficiency was obtained for 0.2 wt.% Ag loading. The degradation efficiency increased with increasing Ag/Fe dosage. The optimal pH for CCl4 degradation by Ag/Fe was about 6. The presence of humic acid had an adverse effect on CCl4 removal.
Collapse
Affiliation(s)
- Xueqiang Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (L.Z.); (Q.F.)
| | - Lai Zhou
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (L.Z.); (Q.F.)
| | - Yuncong Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA;
| | - Baoping Han
- School of Geography & Geomatics and Urban-Rural Planning, Jiangsu Normal University, Xuzhou 221116, China;
| | - Qiyan Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (L.Z.); (Q.F.)
| |
Collapse
|
7
|
Abstract
Abandoned industrial sites are generally characterized by soil and subsoil contamination. The paradigm currently employed for their remediation is “tabula rasa”, i.e., remediation of the entire site before its repurpose. However, this method is not economically, socially, or technologically sustainable: it delays the reuse of large areas, often well-connected to infrastructures, whose reuse may prevent further soil consumption. A possible solution to this problem is the application of adaptive reuse principles. This study, conducted at FULL (Future Urban Legacy Lab) in Politecnico di Torino, presents an interdisciplinary approach to spatialize, visualize, and manage interactions between reclamation and urban design for the transformation of contaminated urban areas. The core is based on a decision support parametric toolkit, named AdRem, developed to compare available remediation techniques and schematic urban design solutions. AdRem uses a 3D modeling interface and VPL scripting. Required input data are a geometric description of the site, data on the contamination status, viable remediation techniques, and associated features, and schematic urban design recommendations. A filtering process selects the techniques compatible with the site use foreseen. The output is an optimized remediation and reuse plan that can support an interdisciplinary discussion on possible site regeneration options.
Collapse
|
8
|
Validating the Efficiency of the FeS2 Method for Elucidating the Mechanisms of Contaminant Removal Using Fe0/H2O Systems. Processes (Basel) 2020. [DOI: 10.3390/pr8091162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is growing interest in using pyrite minerals (FeS2) to enhance the efficiency of metallic iron (Fe0) for water treatment (Fe0/H2O systems). This approach contradicts the thermodynamic predicting suppression of FeS2 oxidation by Fe0 addition. Available results are rooted in time series correlations between aqueous and solid phases based on data collected under various operational conditions. Herein, the methylene blue method (MB method) is used to clarify the controversy. The MB method exploits the differential adsorptive affinity of MB onto sand and sand coated with iron corrosion products to assess the extent of Fe0 corrosion in Fe0/H2O systems. The effects of the addition of various amounts of FeS2 to a Fe0/sand mixture (FeS2 method) on MB discoloration were characterized in parallel quiescent batch experiments for up to 71 d (pH0 = 6.8). Pristine and aged FeS2 specimens were used. Parallel experiments with methyl orange (MO) and reactive red 120 (RR120) enabled a better discussion of the achieved results. The results clearly showed that FeS2 induces a pH shift and delays Fe precipitation and sand coating. Pristine FeS2 induced a pH shift to values lower than 4.5, but no quantitative MB discoloration occurred after 45 d. Aged FeS2 could not significantly shift the pH value (final pH ≥ 6.4) but improved the MB discoloration. The used systematic sequence of experiments demonstrated that adsorption and coprecipitation are the fundamental mechanisms of contaminant removal in Fe0/H2O systems. This research has clarified the reason why a FeS2 addition enhances the efficiency of Fe0 environmental remediation.
Collapse
|
9
|
A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. WATER 2020. [DOI: 10.3390/w12041207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Humic acid-coated goethite nanoparticles (HA-GoeNPs) have been recently proposed as an effective reagent for the in situ nanoremediation of contaminated aquifers. However, the effective dosage of these particles has been studied only at laboratory scale to date. This study investigates the possibility of using HA-GoeNPs in remediation of real field sites by mimicking the injection and transport of HA-GoeNPs under realistic conditions. To this purpose, a three-dimensional (3D) transport experiment was conducted in a large-scale container representing a heterogeneous unconfined aquifer. Monitoring data, including particle size distribution, total iron (Fetot) content and turbidity measurements, revealed a good subsurface mobility of the HA-GoeNP suspension, especially within the higher permeability zones. A radius of influence of 2 m was achieved, proving that HA-GoeNPs delivery is feasible for aquifer restoration. A flow and transport model of the container was built using the numerical code Micro and Nanoparticle transport Model in 3D geometries (MNM3D) to predict the particle behavior during the experiment. The agreement between modeling and experimental results validated the capability of the model to reproduce the HA-GoeNP transport in a 3D heterogeneous aquifer. Such result confirms MNM3D as a valuable tool to support the design of field-scale applications of goethite-based nanoremediation.
Collapse
|