1
|
Iqbal A, Bonasi KS. A critical review on the removal of lead (heavy metal) by using various adsorbents from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35491-0. [PMID: 39538079 DOI: 10.1007/s11356-024-35491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
One of the biggest problems globally is the presence of lead in water resources. Due to increased Industrialization, the presence of the heavy metal lead in the environment is a severe worry. Excessive lead poisoning harms all the aquatic systems, which poses a concern for human health and damages this ecosystem through eutrophication. Various techniques are used to collect and remove lead from wastewater to protect aquatic bodies. Adsorption is among the finest methods for eliminating lead from wastewater since it is easy to use, effective, universal, inexpensive, and environmentally friendly. Adsorption is one of the most efficient and effective techniques employed even at low temperatures, as we will explore in this paper. The removal of lead (heavy metal) by adsorption utilizing various adsorbents, including cellulose, industrial by-products, forest wastes, and biotechnology wastes, was evaluated in this paper at various levels from the numerous research and literature. Then, various adsorbent types were assessed in terms of removal efficiency, adsorption capacity, temperature, optimal pH, sorbent dose, and contact time. The paper also examines or researches adsorbent concentration, critical studies, and lead removal percentage. The growth of low-cost adsorbents offers challenges for lead recovery and removal in the near and far future.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Chemical Engineering, National Institute of Technology Srinagar, Hazratbal, Jammu and Kashmir, 190006, Srinagar, India
| | - Krishna Srihari Bonasi
- Department of Chemical Engineering, National Institute of Technology Srinagar, Hazratbal, Jammu and Kashmir, 190006, Srinagar, India.
| |
Collapse
|
2
|
Patel KS, Pandey PK, Martín-Ramos P, Corns WT, Varol S, Bhattacharya P, Zhu Y. A review on arsenic in the environment: bio-accumulation, remediation, and disposal. RSC Adv 2023; 13:14914-14929. [PMID: 37200696 PMCID: PMC10186335 DOI: 10.1039/d3ra02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Arsenic is a widespread serious environmental pollutant as a food chain contaminant and non-threshold carcinogen. Arsenic transfer through the crops-soil-water system and animals is one of the most important pathways of human exposure and a measure of phytoremediation. Exposure occurs primarily from the consumption of contaminated water and foods. Various chemical technologies are utilized for As removal from contaminated water and soil, but they are very costly and difficult for large-scale cleaning of water and soil. In contrast, phytoremediation utilizes green plants to remove As from a contaminated environment. A large number of terrestrial and aquatic weed flora have been identified so far for their hyper metal removal capacity. In the panorama presented herein, the latest state of the art on methods of bioaccumulation, transfer mechanism of As through plants and animals, and remediation that encompass the use of physicochemical and biological processes, i.e., microbes, mosses, lichens, ferns, algae, and macrophytes have been assessed. Since these bioremediation approaches for the clean-up of this contaminant are still at the initial experimental stages, some have not been recognized at full scale. Nonetheless, extensive research on these primitive plants as bio-accumulators can be instrumental in controlling arsenic exposure and rehabilitation and may result in major progress to solve the problem on a worldwide scale.
Collapse
Affiliation(s)
- Khageshwar Singh Patel
- Department of Applied Sciences, Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Piyush Kant Pandey
- Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza Carretera de Cuarte, s/n 22071 Huesca Spain
| | - Warren T Corns
- PS Analytical Ltd Arthur House, Unit 11 Crayfields Industrial Estate, Orpington Kent BR5 3HP UK
| | - Simge Varol
- Suleyman Demirel University, Faculty, Geological Engineering Department Çünür Isparta- 32260 Turkey
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology Teknikringen 10B SE-100 44 Stockholm Sweden
| | - Yanbei Zhu
- Environmental Standards Research Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba Ibaraki 305-8563 Japan
| |
Collapse
|
3
|
Carmona B, Abejón R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. MEMBRANES 2023; 13:385. [PMID: 37103812 PMCID: PMC10145262 DOI: 10.3390/membranes13040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
A bibliometric analysis, using the Scopus database as a source, was carried out in order to study the scientific documents published up to 2021 regarding the use of electrodialysis, membrane distillation, and forward osmosis for the removal of heavy metals from wastewater. A total of 362 documents that fulfilled the search criteria were found, and the results from the corresponding analysis revealed that the number of documents greatly increased after the year 2010, although the first document was published in 1956. The exponential evolution of the scientific production related to these innovative membrane technologies confirmed an increasing interest from the scientific community. The most prolific country was Denmark, which contributed 19.3% of the published documents, followed by the two main current scientific superpowers: China and the USA (with 17.4% and 7.5% contributions, respectively). Environmental Science was the most common subject (55.0% of contributions), followed by Chemical Engineering (37.3% of contributions) and Chemistry (36.5% of contribution). The prevalence of electrodialysis over the other two technologies was clear in terms of relative frequency of the keywords. An analysis of the main hot topics identified the main advantages and drawbacks of each technology, and revealed that examples of their successful implementation beyond the lab scale are still scarce. Therefore, complete techno-economic evaluation of the treatment of wastewater polluted with heavy metals via these innovative membrane technologies must be encouraged.
Collapse
Affiliation(s)
- Benjamín Carmona
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
4
|
Synthesis of Chemically Modified Acid-Functionalized Multiwall Carbon Nanotubes with Benzimidazole for Removal of Lead and Cadmium Ions from Wastewater. Polymers (Basel) 2023; 15:polym15061421. [PMID: 36987202 PMCID: PMC10056040 DOI: 10.3390/polym15061421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In this work, acid-functionalized multiwalled carbon (MWCNTs–CO2H) nanotube was successfully functionalized with a heterocyclic scaffold, namely benzimidazole, to give novel functionalized multiwalled carbon nanotubes (BI@MWCNTs). Then, FTIR, XRD, TEM, EDX, Raman spectroscopy, DLS, and BET analyses were used to characterize the synthesized BI@MWCNTs. The effectiveness of the adsorption of two heavy metal ions, Cd2+ and Pb2+, in single metal and mixed metal solutions on the prepared material was investigated. Influencing parameters for the adsorption method, for example duration, pH, starting metal concentration, and BI@MWCNT dosage, were examined for both metal ions. Moreover, adsorption equilibrium isotherms fit with the Langmuir and Freundlich models perfectly, while the intra-particle diffusion models provide pseudo-second order adsorption kinetics. The adsorption of Cd2+ and Pb2+ ions onto BI@MWCNTs revealed an endothermic and a spontaneous method with great affinity as a result of the negative values of Gibbs free energy (ΔG) and the positive values of enthalpy (ΔH) and entropy (ΔS). Both Pb2+ and Cd2+ ions were completely eliminated from aqueous solution (100 and 98%, respectively) using the prepared material. Additionally, BI@MWCNTs have a high adsorption capacity and were regenerated in a simple way and reused for six cycles, which make them a cost-effective and efficient absorbent for the removal of such heavy metal ions from wastewater.
Collapse
|
5
|
Chowdhury IR, Chowdhury S, Mazumder MAJ, Al-Ahmed A. Removal of lead ions (Pb 2+) from water and wastewater: a review on the low-cost adsorbents. APPLIED WATER SCIENCE 2022; 12:185. [PMID: 35754932 PMCID: PMC9213643 DOI: 10.1007/s13201-022-01703-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/27/2022] [Indexed: 05/31/2023]
Abstract
The presence of lead compounds in the environment is an issue. In particular, supply water consumption has been reported to be a significant source of human exposure to lead compounds, which can pose an elevated risk to humans. Due to its toxicity, the International Agency for Research on Cancer and the US Environmental Protection Agency (USEPA) have classified lead (Pb) and its compounds as probable human carcinogens. The European Community Directive and World Health Organization have set the maximum acceptable lead limits in tap water as 10 µg/L. The USEPA has a guideline value of 15 µg/L in drinking water. Removal of lead ions from water and wastewater is of great importance from regulatory and health perspectives. To date, several hundred publications have been reported on the removal of lead ions from an aqueous solution. This study reviewed the research findings on the low-cost removal of lead ions using different types of adsorbents. The research achievements to date and the limitations were investigated. Different types of adsorbents were compared with respect to adsorption capacity, removal performances, sorbent dose, optimum pH, temperature, initial concentration, and contact time. The best adsorbents and the scopes of improvements were identified. The adsorption capacity of natural materials, industrial byproducts, agricultural waste, forest waste, and biotechnology-based adsorbents were in the ranges of 0.8-333.3 mg/g, 2.5-524.0 mg/g, 0.7-2079 mg/g, 0.4-769.2 mg/g, and 7.6-526.0 mg/g, respectively. The removal efficiency for these adsorbents was in the range of 13.6-100%. Future research to improve these adsorbents might assist in developing low-cost adsorbents for mass-scale applications.
Collapse
Affiliation(s)
- Imran Rahman Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
- Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Mohammad Abu Jafar Mazumder
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems, King Fahd University of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia
| |
Collapse
|
6
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
7
|
Punia P, Bharti MK, Dhar R, Thakur P, Thakur A. Recent Advances in Detection and Removal of Heavy Metals from Contaminated Water. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pinki Punia
- Guru Jambheshwar University of Science and Technology Department of Physics 125001 Hisar Haryana India
| | - Manish Kumar Bharti
- Amity University Haryana Department of Aerospace Engineering 122413 Gurugram Haryana India
| | - Rakesh Dhar
- Guru Jambheshwar University of Science and Technology Department of Physics 125001 Hisar Haryana India
| | - Preeti Thakur
- Amity University Haryana Department of Physics 122413 Gurugram Haryana India
| | - Atul Thakur
- Amity University Haryana Amity Institute of Nanotechnology 122413 Gurugram Haryana India
| |
Collapse
|
8
|
Aijaz MO, Karim MR, Omar NMA, Othman MHD, Wahab MA, Akhtar Uzzaman M, Alharbi HM, Wazeer I. Recent Progress, Challenges, and Opportunities of Membrane Distillation for Heavy Metals Removal. CHEM REC 2022; 22:e202100323. [PMID: 35258163 DOI: 10.1002/tcr.202100323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Water is essential for the presence of life on this earth. However, water contamination due to the presence of heavy/toxic metals is one of the serious environmental issues for living beings. Several methods have been devoted to separating or removing those heavy metals from wastewater. Among them, membrane distillation (MD) has become one of the most attractive approaches due to its higher rejection rate than processes driven by pressure, lower energy consumption than traditional distillation processes. MD has gained significant attention for removing heavy metals than other techniques like ion exchange and adsorption in the last two decades. This review provides insight knowledge to the reader and focuses on how heavy metals impact humans and the environment, sources of heavy metals, current and especially removal methods using the MD method. Moreover, recent studies, challenges, and opportunities on MD membrane modules and heavy metal removal systems are discussed. More importantly, in this review, we have identified the gaps and opportunities that are required for enhancing the MD approach and its practical suitability for heavy metal removals. MD module and system showed high performance, proving their possible applications to remove heavy metal ions in water/wastewater treatment.
Collapse
Affiliation(s)
- M O Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia.,Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia
| | - M R Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia.,K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh, Saudi Arabia
| | - N M A Omar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia
| | - M H D Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia
| | - M A Wahab
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.,School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St Brisbane, GPO Box 2434, Brisbane, Queensland, Australia, 4001
| | - M Akhtar Uzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Selangor, Malaysia
| | - H M Alharbi
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia.,Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - I Wazeer
- Chemical Engineering Department, King Saud University, P.O. Box: 800, Riyadh, 11421, Saudi Arabia.,Chemical Engineering Department, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Mahroug H, Belkaid S, Medjahed K. Removal of Pb2+ from synthetic aqueous solution using hydroxyapatite and hydroxyapatite@AD37 composite materials. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, a simple method was proposed to obtain hydroxyapatite (HA) and hydroxyapatite/partially hydrolysed polyacrylamide (HA/AD37) composite materials which where applied to lead retention from aqueous solution by means of the batch method. The characterization of the materials verified that the presence of AD37 created interconnected porosity in the composite HA/AD37 giving it a good swelling properties that conducted to an easy separation of the material from aqueous solutions. Retention experiments carried out by varying the dose of lead and the contact time between adsorbent and adsorbate showed that the maximum adsorption capacity (Qmax) obtained for 2072.2 mg/L as initial concentration of Pb2 + was equal to 984.63 mg/g for HA and 924.50 mg/g for HA/AD37. Furthermore, AD37 used alone cannot retain Pb2 + ions. Indeed, the calculated Qmax of AD37 part of the composite was of 806.57 mg/g. The obtained Qmax values was elevated more than the reported values in many literatures. Based on the correlation coefficient, the kinetic study proved that pseudo-second order model agrees well with the obtained experimental data for Pb2+ retention by both HA and HA/AD37. Also, isotherm study explored that adsorption of lead was best fitted by Langmuir model for HA and Temkin model for HA/AD37. At last, the mechanism of retention was probed by characterizing the adsorbents after contact with lead ions by XRD and SEM. The results showed the transformation of calcium-hydroxyapatite to different structures of lead hydroxyapatite confirming the presence of ion exchange mechanism between Ca2+ and Pb2+.
Collapse
Affiliation(s)
- Hanane Mahroug
- Faculty of Science and Technology, University of Tissemsilt, Tissemsilt, Algeria
- Laboratory of Applications in Organic Electrolytes and Polyelectrolytes (LAEPO), Department of Chemistry, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| | - Soraya Belkaid
- Laboratory of Applications in Organic Electrolytes and Polyelectrolytes (LAEPO), Department of Chemistry, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| | - Kouider Medjahed
- Laboratory of Applications in Organic Electrolytes and Polyelectrolytes (LAEPO), Department of Chemistry, Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
10
|
Parani S, Oluwafemi OS. Membrane Distillation: Recent Configurations, Membrane Surface Engineering, and Applications. MEMBRANES 2021; 11:membranes11120934. [PMID: 34940435 PMCID: PMC8708938 DOI: 10.3390/membranes11120934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Membrane distillation (MD) is a developing membrane separation technology for water treatment that involves a vapor transport driven by the vapor pressure gradient across the hydrophobic membrane. MD has gained wide attention in the last decade for various separation applications, including the separation of salts, toxic heavy metals, oil, and organic compounds from aqueous solutions. Compared with other conventional separation technologies such as reverse osmosis, nanofiltration, or thermal distillation, MD is very attractive due to mild operating conditions such as low temperature and atmospheric pressure, and 100% theoretical salt rejection. In this review, membrane distillation’s principles, recent MD configurations with their advantages and limitations, membrane materials, fabrication of membranes, and their surface engineering for enhanced hydrophobicity are reviewed. Moreover, different types of membrane fouling and their control methods are discussed. The various applications of standalone MD and hybrid MD configurations reported in the literature are detailed. Furthermore, studies on the MD-based pilot plants installed around the world are covered. The review also highlights challenges in MD performance and future directions.
Collapse
Affiliation(s)
- Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
- Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
11
|
Politaeva N, Badenko V. Magnetic and electric field accelerate Phytoextraction of copper Lemna minor duckweed. PLoS One 2021; 16:e0255512. [PMID: 34347844 PMCID: PMC8336833 DOI: 10.1371/journal.pone.0255512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
In accordance with the opinion of the World Health Organization and the World Water Council the development of effective technologies for the treatment of wastewater from heavy metals for their discharge into water bodies or reuse is an urgent task nowadays. Phytoremediation biotechnologies is the most environmentally friendly and cheapest way of the treatment of wastewater, suitable for sustainable development principals. The main disadvantage of the phytoremediation is the slow speed of the process. A method for accelerating the process of phytoremediation by the combined effect of magnetic and weak electric fields is proposed. The purpose of this study is to determine the values of the parameters of the magnetic and weak electric fields that are most suitable for extracting cuprum ions from wastewater using the higher aqua plants (Lemna minor). A corresponding technological process based on the results of the study is proposed. The results have shown that the removal of copper cations from sulfate solutions effectively occurs in the initial period of time (1–5 hours) under the influence of a magnetic field with an intensity of H = 2 kA/m. Under the combined influence of an electrical current with density j = 240 μA/cm2 and a magnetic field (H = 2 kA/m) the highest rate of copper extraction by duckweed leaves is achieved. Under these conditions, the greatest growth and development of plant leaves occurs. The paper presents the results of determining of the parameters of the electrochemical release from the eluate of the spent phytomass of duckweed. It has been determined that the release of metal occurs at E = 0.32 V. An original scheme for wastewater treatment from copper with subsequent separation of copper from the spent phytomass of duckweed is proposed. In general, the presented results are a scientific justification of wastewater treatment technologies and a contribution to resolving the crisis in the field of fresh water supply. An important contribution in the circular economy is a technology recommendation proposed for recovering copper from duckweed after wastewater treatment.
Collapse
Affiliation(s)
- Natalia Politaeva
- Civil Engineering Institute, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russian Federation
| | - Vladimir Badenko
- Civil Engineering Institute, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russian Federation
- * E-mail:
| |
Collapse
|
12
|
Zeolite–polysulfone-based adsorptive membrane for removal of metal pollutants. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
The Status of Arsenic Pollution in the Greek and Cyprus Environment: An Overview. WATER 2021. [DOI: 10.3390/w13020224] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study presents an overview about the arsenic (As) contamination and its sources in two European countries. Arsenic is a highly toxic element in its inorganic form and it is carcinogenic to human seven in low concentrations. The occurrence of As in surface water, stream and marine waters, groundwater, bottled water, sediment, soil, mines, and seafood, its environmental origin, and its impacts on human health are discussed. The classes of Geoaccumulation Index for As in Greece ranges from practically uncontaminated to extremely contaminated, and in Cyprus varies between practically uncontaminated and heavily contaminated. In many cases, the As contamination reaches very high concentrations and the impacts may be crucial for the human health and ecosystems. Physicochemical properties, regional climate and geological setting are controlling the occurrence and transport of As. In Greece and Cyprus, the geology, lithology, and ore-deposits are the most important factors for the variation of As contents in water, soil, and sediment. The dominant As species are also determined by the location and the redox conditions. The findings of this paper may be useful for scientists and stakeholders monitoring the studied areas and applying measures for protection of the human and terrestrial ecological receptors (plants, avian, mammals).
Collapse
|
14
|
Alkhudhiri A, Bin Darwish N, Hakami MW, Abdullah A, Alsadun A, Abu Homod H. Boron Removal by Membrane Distillation: A Comparison Study. MEMBRANES 2020; 10:membranes10100263. [PMID: 32998231 PMCID: PMC7600657 DOI: 10.3390/membranes10100263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022]
Abstract
Several Membrane Distillation (MD) technologies have been employed to remove boron from various concentrations. In this study, Vacuum Membrane Distillation (VMD), Permeate Gap Membrane Distillation (PGMD), and Air Gap Membrane Distillation (AGMD) are examined to evaluate their effectiveness when combined with several boron concentrations (1.5, 7 and 30 ppm) and operating parameters (circulation rate from 0.9 L/min to 5 L/min, feed temperature from 40 to 70 °C, and pH from 3–11). Those concentrations of boron are selected on the basis of the concentration of boron in the permeate side of the single-pass reverse osmosis (RO) system, Arabian Gulf, and contaminated brackish water. Moreover, synthetic seawater is treated to assess MD technologies’ effectiveness. A high removal efficiency of boron is accomplished by MD. AGMD, PGMD, and VMD are promising methods for the desalination industry. AGMD shows excellent boron removal, which was above 99% with a wide ranging concentration. In addition, VMD demonstrates good permeate flux compared to the other MD technologies, which were about 5.8 kg/m2·h for synthetic seawater. Furthermore, there is no noteworthy influence of the pH value on the boron removal efficiency.
Collapse
Affiliation(s)
- Abdullah Alkhudhiri
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.B.D.); (A.A.); (H.A.H.)
- Correspondence:
| | - Nawaf Bin Darwish
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.B.D.); (A.A.); (H.A.H.)
| | - Mohammed Wali Hakami
- Chemical Engineering Technology Department, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia;
| | - AbdelKader Abdullah
- College of Engineering, Prince Sattam bin Abdulaziz University, P.O. Box 655, AlKharj 11942, Saudi Arabia;
| | - Ahmed Alsadun
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.B.D.); (A.A.); (H.A.H.)
| | - Hosam Abu Homod
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (N.B.D.); (A.A.); (H.A.H.)
| |
Collapse
|
15
|
Removal of Cadmium from Contaminated Water Using Coated Chicken Bones with Double-Layer Hydroxide (Mg/Fe-LDH). WATER 2020. [DOI: 10.3390/w12082303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Occurrence of heavy metals in freshwater sources is a grave concern due to their severe impacts on public health and aquatic life. Cadmium (Cd2+) is one of the most dangerous heavy metals, and can cause serious diseases even at low concentrations. Hence, a wide range of treatment technologies exist, such as nanofiltration and biological reactors. In this context, the present investigation aims at the development of a new adsorption medium, made from chicken bones coated with iron (Fe) and magnesium (Mg) hydroxides, to remove cadmium from water. This novel chicken bone functional substance was manufactured by applying layered double hydroxides (LDH) into the chicken bones. Initially, the new adsorption medium was characterized using Fourier-transform infrared spectroscopy (FTIR technology), then it was applied to remove cadmium from water under different conditions, including pH of water (3–7.5), agitation speed (50–200 rpm), adsorbent dose (1–20 g per 100 mL), and contact time (30–120 min). Additionally, the reaction kinetics were studied using a pseudo-first order kinetic model. The results obtained from the present study proved that the new adsorption medium removed 97% of cadmium after 120 min at an agitation speed of 150 rpm, pH of 5, and adsorption dose of 10 g per 100 mL. The results also showed that the new adsorption medium contains a significant number of functional groups, including hydroxyl groups. According to the outcomes of the kinetic study, the mechanism of removing metal is attributed to surface precipitation, ion exchange, complexation, hydrogen binding between pollutants, and the LDH-chicken bone substance.
Collapse
|