1
|
Vyas KD, Singh A. Juncus rigidus high biomass and cellulose productivity under wastewater salinity stress - A paradigm shift to the valorization of RO reject water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173076. [PMID: 38734100 DOI: 10.1016/j.scitotenv.2024.173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The use of water purifiers is intensively catching up and disposing of reverse osmosis reject water is of great concern. Reject water management using conventional methods is costly and harmful to the environment. To address this issue, the present study aims to utilize reverse osmosis reject wastewater using an eco-friendly approach. Juncus rigidus was treated with reject wastewater containing different salinity levels. Wastewater-treated plant dry biomass increased with increasing reject water salinity, and 625.3 g dry biomass recovered in treatment-B (~18,520 ppm). However, ~23,220 ppm wastewater salinity was lethal to the plants. The cellulose was extracted by alkali hydrolysis. The cellulose content in the wastewater-treated biomass was significantly higher in Treatment-B compared to both the control and Treatment-A (~12,744 ppm). The water salinity enhanced the cellulose (26.49 %) production in J. rigidus. Cellulose purity was confirmed using spectroscopic and thermogravimetric means. XRD shows highest crystallinity Index (77.29) with a d-spacing of 4.7 Å and 5.7 nm crystallite size in treatment-B. FTIR results reveal well-defined relevant peaks for OH, CH, CO, CH2, C-O-C, CO groups in treatment-B cellulose. Salinity impacts carboxyl groups in treatment B cellulose with a sharper and intense peak at 1644 cm-1 responsible for water absorption. Treatment-B exhibits higher thermal stability due to increased crystallinity. DSC shows endothermic depolymerization of cellulose with distinct peaks for different treatments. Morphological traits got better with increasing salinity with no adverse effect on cellulose. Salinity moderately affected the water absorption capacity of cellulose. All cellulose samples were devoid of gram-negative bacteria known by microbial test. This pioneering work underscores the plant's remarkable capacity not only to accomplish the circular economy by the valorization of wastewater obtained from various water purifiers for Juncus cultivation for cellulose production for diverse applications but also to generate income from wastewater.
Collapse
Affiliation(s)
- Krupali Dipakbhai Vyas
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneesha Singh
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Agrawal S, Nawaz T. A mechanistic mathematical model for the treatment of synthetic oil-field wastewater (produced water) by electrocoagulation process using aluminium electrodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20117-20132. [PMID: 38374501 DOI: 10.1007/s11356-024-32310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Produced water (PW) is the largest by-product that comes out of the oil wells during oil and gas (O&G) field exploration. PW contains high-salt concentration along with other organic and inorganic components; therefore, PW must be treated before disposal. Electrocoagulation (EC) is an effective treatment method to remove pollutants from PW which has been the focus of many experimental studies; however, a mathematical model specifically for PW treatment by EC has not been developed yet. In this work, a comprehensive mathematical model has been developed to elucidate the role of EC operating parameters on the PW treatment performance and determine the mechanism for COD (Chemical Oxygen Demand) removal. The present model considers and identifies the dominant Al-hydroxy complex species and their contribution to the COD removal from synthetic PW samples by estimating their rate constants and comparing their magnitudes and investigates multi-scale modelling of the EC reactor. The influence of working parameters such as current density, initial pH, interelectrode distance, mixing speed and solution volume of PW on Al coagulant production and COD removal was investigated and modelled. The study estimates the rate constants of the reactions taking place for COD removal by EC process and by comparing their magnitudes identifies the dominant reactions and coagulant species involved in the process. The mathematical model prediction of COD removal fits well with the experimental data at 10 mA cm-2, 15 mA cm-2 and 20 mA cm-2 current density with R2 value of 0.96, 0.97 and 0.92, respectively and for dissolved Al concentration R2 value of 0.96, 0.99, and 0.97, respectively. The simulated results reproduced a good fit at initial pH of 6.1, 7.3 and 8.6 with R2 value of 0.92, 0.96 and 0.98, respectively for COD removal. The mathematical model and the experimental results showed the role of dominant Al-hydroxy complex species such asAl OH 2 + ,Al OH 2 + , Al OH 3 ,Al 2 OH 2 + 4 andAl OH 4 - in controlling the COD removal process. Under different operating conditions considered in the study, the model also predicted the COD removal performance of the EC reactors at different reactor volumes with R2 value of 0.96 for higher solution volume and larger reactor. The model presented and rate constants determined in the study will provide a theoretical basis for designing, scaling up and operating the EC reactor for oil-field PW treatment.
Collapse
Affiliation(s)
- Saumya Agrawal
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Tabish Nawaz
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
3
|
Poulhazan A, Arnold AA, Mentink-Vigier F, Muszyński A, Azadi P, Halim A, Vakhrushev SY, Joshi HJ, Wang T, Warschawski DE, Marcotte I. Molecular-level architecture of Chlamydomonas reinhardtii's glycoprotein-rich cell wall. Nat Commun 2024; 15:986. [PMID: 38307857 PMCID: PMC10837150 DOI: 10.1038/s41467-024-45246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii. Using in situ solid-state and sensitivity-enhanced nuclear magnetic resonance, we reveal unprecedented details on the protein and carbohydrate composition and their nanoscale heterogeneity, as well as the presence of spatially segregated protein- and glycan-rich regions with different dynamics and hydration levels. We show that mannose-rich lower-molecular-weight proteins likely contribute to the cell wall cohesion by binding to high-molecular weight protein components, and that water provides plasticity to the cell-wall architecture. The structural insight exemplifies strategies used by nature to form cell walls devoid of cellulose or other glycan polymers.
Collapse
Affiliation(s)
- Alexandre Poulhazan
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, H2X 2J6, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, H2X 2J6, Canada
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Adnan Halim
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, 75005, Paris, France.
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, H2X 2J6, Canada.
| |
Collapse
|
4
|
Hasnain M, Zainab R, Ali F, Abideen Z, Yong JWH, El-Keblawy A, Hashmi S, Radicetti E. Utilization of microalgal-bacterial energy nexus improves CO 2 sequestration and remediation of wastewater pollutants for beneficial environmental services. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115646. [PMID: 37939556 DOI: 10.1016/j.ecoenv.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan; Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Saud Hashmi
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Emanuele Radicetti
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
6
|
Alvarez C, Félix C, Lemos MFL. The Antiviral Potential of Algal Lectins. Mar Drugs 2023; 21:515. [PMID: 37888450 PMCID: PMC10608189 DOI: 10.3390/md21100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.
Collapse
Affiliation(s)
| | | | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (C.A.); (C.F.)
| |
Collapse
|
7
|
Abideen Z, Ansari R, Hasnain M, Flowers TJ, Koyro HW, El-Keblawy A, Abouleish M, Khan MA. Potential use of saline resources for biofuel production using halophytes and marine algae: prospects and pitfalls. FRONTIERS IN PLANT SCIENCE 2023; 14:1026063. [PMID: 37332715 PMCID: PMC10272829 DOI: 10.3389/fpls.2023.1026063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/20/2023] [Indexed: 06/20/2023]
Abstract
There exists a global challenge of feeding the growing human population of the world and supplying its energy needs without exhausting global resources. This challenge includes the competition for biomass between food and fuel production. The aim of this paper is to review to what extent the biomass of plants growing under hostile conditions and on marginal lands could ease that competition. Biomass from salt-tolerant algae and halophytes has shown potential for bioenergy production on salt-affected soils. Halophytes and algae could provide a bio-based source for lignoceelusic biomass and fatty acids or an alternative for edible biomass currently produced using fresh water and agricultural lands. The present paper provides an overview of the opportunities and challenges in the development of alternative fuels from halophytes and algae. Halophytes grown on marginal and degraded lands using saline water offer an additional material for commercial-scale biofuel production, especially bioethanol. At the same time, suitable strains of microalgae cultured under saline conditions can be a particularly good source of biodiesel, although the efficiency of their mass-scale biomass production is still a concern in relation to environmental protection. This review summaries the pitfalls and precautions for producing biomass in a way that limits environmental hazards and harms for coastal ecosystems. Some new algal and halophytic species with great potential as sources of bioenergy are highlighted.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Raziuddin Ansari
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Timothy J. Flowers
- Department of Evolution Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abouleish
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammed Ajmal Khan
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
The Prospects of Algae-Derived Vitamins and Their Precursors for Sustainable Cosmeceuticals. Processes (Basel) 2023. [DOI: 10.3390/pr11020587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Aquatic algae are a rich source of a wide range of bioproducts intended to compete for a sizable global market share. Thanks to the gradual shift towards the use of natural products, microalgae-derived bioactive compounds offer an ecofriendly and vegan option to the cosmeceutical sector, whose products aim to improve skin health but currently consist of mostly synthetic chemicals. In particular, algae-derived vitamins and their precursors are being explored and widely used in the cosmeceuticals industry as compounds that contain biologically active ingredients with therapeutic benefits. The present review highlights the current strategies for industrial production of an array of vitamins from algae for cosmeceutical applications. When compared to traditional plant sources, algae have been found to accumulate vitamins, such as A, B1, B2, B6, B12, C and E, in high concentrations. The purpose of this review is to provide context for the development of a green and sustainable algae-derived bioeconomy by summarizing and comparing the current market for vitamins and precursors derived from algae, as well as presenting novel strategies and key findings from the most recent research in this area. Emphasis is placed on novel biotechnological interventions that encompass genetic modifications, genetic engineering, and media development to enhance vitamin biosynthesis.
Collapse
|
9
|
Hassanien A, Saadaoui I, Schipper K, Al-Marri S, Dalgamouni T, Aouida M, Saeed S, Al-Jabri HM. Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Front Bioeng Biotechnol 2023; 10:1104914. [PMID: 36714622 PMCID: PMC9881887 DOI: 10.3389/fbioe.2022.1104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, the increased demand for and regional variability of available water resources, along with sustainable water supply planning, have driven interest in the reuse of produced water. Reusing produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. Therefore, efficient wastewater treatment is a crucial step prior to reuse to meet the requirements for use within the oil and gas industry or by external users. Bioremediation using microalgae has received increased interest as a method for produced water treatment for removing not only major contaminants such as nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some research publications reported nearly 100% removal of total hydrocarbons, total nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced water. Enhancing microalgal removal efficiency as well as growth rate, in the presence of such relevant contaminants is of great interest to many industries to further optimize the process. One novel approach to further enhancing algal capabilities and phytoremediation of wastewater is genetic modification. A comprehensive description of using genetically engineered microalgae for wastewater bioremediation is discussed in this review. This article also reviews random and targeted mutations as a method to alter microalgal traits to produce strains capable of tolerating various stressors related to wastewater. Other methods of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology. This is accompanied by the opportunities, as well as the challenges of using genetically engineered microalgae for this purpose.
Collapse
Affiliation(s)
- Alaa Hassanien
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Tasneem Dalgamouni
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, Qatar Foundation, College of Health and Life Sciences, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Suhur Saeed
- ExxonMobil Research Qatar (EMRQ), Doha, Qatar
| | - Hareb M. Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Hareb M. Al-Jabri,
| |
Collapse
|
10
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
11
|
Al-Kindi S, Al-Bahry S, Al-Wahaibi Y, Taura U, Joshi S. Partially hydrolyzed polyacrylamide: enhanced oil recovery applications, oil-field produced water pollution, and possible solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:875. [PMID: 36227428 PMCID: PMC9558033 DOI: 10.1007/s10661-022-10569-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/19/2022] [Indexed: 05/27/2023]
Abstract
Polymers, such as partially hydrolyzed polyacrylamide (HPAM), are widely used in oil fields to enhance or improve the recovery of crude oil from the reservoirs. It works by increasing the viscosity of the injected water, thus improving its mobility and oil recovery. However, during such enhanced oil recovery (EOR) operations, it also produces a huge quantity of water alongside oil. Depending on the age and the stage of the oil reserve, the oil field produces ~ 7-10 times more water than oil. Such water contains various types of toxic components, such as traces of crude oil, heavy metals, and different types of chemicals (used during EOR operations such as HPAM). Thus, a huge quantity of HPAM containing produced water generated worldwide requires proper treatment and usage. The possible toxicity of HPAM is still ambiguous, but its natural decomposition product, acrylamide, threatens humans' health and ecological environments. Therefore, the main challenge is the removal or degradation of HPAM in an environmentally safe manner from the produced water before proper disposal. Several chemical and thermal techniques are employed for the removal of HPAM, but they are not so environmentally friendly and somewhat expensive. Among different types of treatments, biodegradation with the aid of individual or mixed microbes (as biofilms) is touted to be an efficient and environmentally friendly way to solve the problem without harmful side effects. Many researchers have explored and reported the potential of such bioremediation technology with a variable removal efficiency of HPAM from the oil field produced water, both in lab scale and field scale studies. The current review is in line with United Nations Sustainability Goals, related to water security-UNSDG 6. It highlights the scale of such HPAM-based EOR applications, the challenge of produced water treatment, current possible solutions, and future possibilities to reuse such treated water sources for other applications.
Collapse
Affiliation(s)
- Shatha Al-Kindi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Saif Al-Bahry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Yahya Al-Wahaibi
- A'Sharqiyah University, Postal Code: 400, P.O. Box 42, Ibra, Oman
| | - Usman Taura
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Sanket Joshi
- Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
12
|
Pozzer AC, Gómez PA, Weiss J. Volatile organic compounds in aquatic ecosystems - Detection, origin, significance and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156155. [PMID: 35609693 DOI: 10.1016/j.scitotenv.2022.156155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) include a broad range of compounds. Their production influences a large number of processes, having direct and secondary effects on different fields, such as climate change, economy and ecology. Although our planet is primarily covered with water (~70% of the globe surface), the information on aquatic VOCs, compared to the data available for the terrestrial environments, is still limited. Regardless of the difficulty in collecting and analysing data, because of their extreme complexity, diversification and important spatial-temporal emission variation, it was demonstrated that aquatic organisms are able to produce a variety of bioactive compounds. This production happens in response to abiotic and biotic stresses, evidencing the fundamental role of these metabolites, both in terms of composition and amount, in providing important ecological information and possible non-invasive tools to monitor different biological systems. The study of these compounds is an important and productive task with possible and interesting impacts in future practical applications in different fields. This review aims to summarize the knowledge on the aquatic VOCs, the recent advances in understanding their diverse roles and ecological impacts, the generally used methodology for their sampling and analysis, and their enormous potential as non-invasive, non-destructive and financeable affordable real-time biomonitoring tool, both in natural habitats and in controlled industrial situations. Finally, the possible future technical applications, highlighting their economic and social potential, such as the possibility to use VOCs as valuable alternative source of chemicals and as biocontrol and bioregulation agents, are emphasized.
Collapse
Affiliation(s)
- Anna Caterina Pozzer
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain
| | - Julia Weiss
- Molecular Genetics, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar. 30202, Cartagena, Murcia, Spain.
| |
Collapse
|
13
|
Li L, Liang T, Zhao M, Lv Y, Song Z, Sheng T, Ma F. A review on mycelial pellets as biological carriers: Wastewater treatment and recovery for resource and energy. BIORESOURCE TECHNOLOGY 2022; 355:127200. [PMID: 35460846 DOI: 10.1016/j.biortech.2022.127200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Mycelial pellets, a new environment friendly biological carrier, have received wide attention from researchers due to porosity, stability and unique biocompatibility. In this article, the theoretical basis and mechanism of mycelial pellets as a biological carrier were analyzed from the properties of mycelial pellets and the interaction between mycelial pellets and other microorganisms. This article aims to collate and present the current application and development trend of mycelial pellets as biological carriers in wastewater treatment, resource and energy recovery, especially the symbiotic particle system formed by mycelial pellets and microalgae is an important way to break through the technical bottleneck of biodiesel recovery from wastewater. This review also analyzes the research hotspots and trends of mycelial pellets as carriers in recent years, discusses the challenges faced by this technology, and puts forward corresponding solutions.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China.
| | - Taojie Liang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Mengjie Zhao
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Ying Lv
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Sun R, Jin Y. Pilot Scale Application of a Ceramic Membrane Bioreactor for Treating High-Salinity Oil Production Wastewater. MEMBRANES 2022; 12:membranes12050473. [PMID: 35629800 PMCID: PMC9144106 DOI: 10.3390/membranes12050473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The offshore oil extraction process generates copious amounts of high-salinity oil-bearing wastewater; at present, treating such wastewater in an efficient and low-consumption manner is a major challenge. In this study, a flat ceramic membrane bioreactor (C−MBR) process combining aerobic microbial treatment technology and ceramic membrane filtration technology was used to treat oil-bearing wastewater. The pilot test results demonstrated the remarkable performance of the combined sequential batch reactor (SBR) and C-MBR process, wherein the chemical oxygen demand (COD) and ammonia nitrogen (NH4+−N) removal rates reached 93% and 98.9%, respectively. Microbial analysis indicated that the symbiosis between Marinobacterium, Marinobacter, and Nitrosomonas might have contributed to simultaneously removing NH4+−N and reducing COD, and the increased enrichment of Nitrosomonas significantly improved the nitrogen removal efficiency. Cleaning ceramic membranes with NaClO solution reduces membrane contamination and membrane cleaning frequency. The combined SBR and C−MBR process is an economical and feasible solution for treating high-salinity oil-bearing wastewater. Based on the pilot application study, the capital expenditure for operating the full-scale combined SBR and C−MBR process was estimated to be 251,717 USD/year, and the unit wastewater treatment cost was 0.21 USD/m3, which saved 62.5% of the energy cost compared to the conventional MBR process.
Collapse
Affiliation(s)
- Ronglin Sun
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yue Jin
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China
- Correspondence: ; Tel.: +86-773-589-6340
| |
Collapse
|
15
|
Sampaio ICF, Jorge Louro Crugeira P, de Azevedo Santos Ferreira J, Nunes Dos Santos J, Borges Torres Lima Matos J, Luiz Barbosa Pinheiro A, Chinalia FA, Fernando de Almeida P. Up-recycling oil produced water as the media-base for the production of xanthan gum. Biopolymers 2022; 113:e23488. [PMID: 35338709 DOI: 10.1002/bip.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Produced water (PW) and crude glycerin (CG) are compounds overproduced by the oil and biodiesel industry and significant scientific efforts are being applied for properly recycling them. The aim of this research is to combine such industrial byproducts for sustaining the production of xanthan by Xanthomonas campestris. Xanthan yields and viscosity on distinct PW ratios (0, 10, 15, 25, 50, 100) and on 100% dialyzed PW (DPW) in shaker batch testing identified DPW treatment as the best approach for further bioreactor experiments. Such experiments showed a xanthan yield of 17.3 g/L within 54 h and a viscosity of 512 mPa s. Physical-chemical characterization (energy dispersive X-ray spectroscopy, scanning electron microscopy and Raman spectroscopy) showed similarities between the produced gum and the experimental control. This research shows a clear alternative for upcycling high salinity PW and CG for the generation of a valued bioproduct for the oil industry.
Collapse
Affiliation(s)
- Igor Carvalho Fontes Sampaio
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | | | - Jacson Nunes Dos Santos
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Josilene Borges Torres Lima Matos
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Fabio Alexandre Chinalia
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Paulo Fernando de Almeida
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
16
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Muthukrishnan L. Bio‐engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. J Basic Microbiol 2022; 62:310-329. [DOI: 10.1002/jobm.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| |
Collapse
|
18
|
Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. SUSTAINABILITY 2022. [DOI: 10.3390/su14010499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Produced water (PW) is the most significant waste stream generated in the oil and gas industries. The generated PW has the potential to be a useful water source rather than waste. While a variety of technologies can be used for the treatment of PW for reuse, biological-based technologies are an effective and sustainable remediation method. Specifically, microalgae, which are a cost-effective and sustainable process that use nutrients to eliminate organic pollutants from PW during the bioremediation process. In these treatment processes, microalgae grow in PW free of charge, eliminate pollutants, and generate clean water that can be recycled and reused. This helps to reduce CO2 levels in the atmosphere while simultaneously producing biofuels, other useful chemicals, and added-value products. As such, this review focuses on PW generation in the oil and gas industry, PW characteristics, and examines the available technologies that can be used for PW remediation, with specific attention to algal-based technologies. In addition, the various aspects of algae growth and cultivation in PW, the effect of growth conditions, water quality parameters, and the corresponding treatment performance are presented. Lastly, this review emphasizes the bioremediation of PW using algae and highlights how to harvest algae that can be processed to generate biofuels for added-value products as a sustainable approach.
Collapse
|
19
|
Aryal RL, Bhurtel KP, Poudel BR, Pokhrel MR, Paudyal H, Ghimire KN. Sequestration of phosphate from water onto modified watermelon waste loaded with Zr(IV). SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2021.1884878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ram Lochan Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Khem Prasad Bhurtel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bhoj Raj Poudel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Megh Raj Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Hari Paudyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kedar Nath Ghimire
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
20
|
Zhu D, Xin J, Li X. Self-assembly encapsulation of vanadium tetrasulfide into nitrogen doped biomass-derived porous carbon as a high performance electrochemical sensor for xanthine determination. NEW J CHEM 2022. [DOI: 10.1039/d2nj02113g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel VS4@N-BPC platform was constructed, and demonstrated a high electrochemical response to xanthine due to the excellent synergistic effect.
Collapse
Affiliation(s)
- Di Zhu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jianjiao Xin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Xuemei Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
21
|
Characterization and Treatment Technologies Applied for Produced Water in Qatar. WATER 2021. [DOI: 10.3390/w13243573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Qatar is one of the major natural gas (NG) producing countries, which has the world’s third-largest NG reserves besides the largest supplier of liquefied natural gas (LNG). Since the produced water (PW) generated in the oil and gas industry is considered as the largest waste stream, cost-effective PW management becomes fundamentally essential. The oil/gas industries in Qatar produce large amounts of PW daily, hence the key challenges facing these industries reducing the volume of PW injected in disposal wells by a level of 50% for ensuring the long-term sustainability of the reservoir. Moreover, it is important to study the characteristics of PW to determine the appropriate method to treat it and then use it for various applications such as irrigation, or dispose of it without harming the environment. This review paper targets to highlight the generation of PW in Qatar, as well as discuss the characteristics of chemical, physical, and biological treatment techniques in detail. These processes and methods discussed are not only applied by Qatari companies, but also by other companies associated or in collaboration with those in Qatar. Finally, case studies from different companies in Qatar and the challenges of treating the PW are discussed. From the different studies analyzed, various techniques as well as sequencing of different techniques were noted to be employed for the effective treatment of PW.
Collapse
|
22
|
Gul Zaman H, Baloo L, Pendyala R, Singa PK, Ilyas SU, Kutty SRM. Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7607. [PMID: 34947202 PMCID: PMC8707545 DOI: 10.3390/ma14247607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
A large volume of produced water (PW) has been produced as a result of extensive industrialization and rising energy demands. PW comprises organic and inorganic pollutants, such as oil, heavy metals, aliphatic hydrocarbons, and radioactive materials. The increase in PW volume globally may result in irreversible environmental damage due to the pollutants' complex nature. Several conventional treatment methods, including physical, chemical, and biological methods, are available for produced water treatment that can reduce the environmental damages. Studies have shown that adsorption is a useful technique for PW treatment and may be more effective than conventional techniques. However, the application of adsorption when treating PW is not well recorded. In the current review, the removal efficiencies of adsorbents in PW treatment are critically analyzed. An overview is provided on the merits and demerits of the adsorption techniques, focusing on overall water composition, regulatory discharge limits, and the hazardous effects of the pollutants. Moreover, this review highlights a potential alternative to conventional technologies, namely, porous adsorbent materials known as metal-organic frameworks (MOFs), demonstrating their significance and efficiency in removing contaminants. This study suggests ways to overcome the existing limitations of conventional adsorbents, which include low surface area and issues with reuse and regeneration. Moreover, it is concluded that there is a need to develop highly porous, efficient, eco-friendly, cost-effective, mechanically stable, and sustainable MOF hybrids for produced water treatment.
Collapse
Affiliation(s)
- Humaira Gul Zaman
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (H.G.Z.); (S.R.M.K.)
| | - Lavania Baloo
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (H.G.Z.); (S.R.M.K.)
| | - Rajashekhar Pendyala
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Pradeep Kumar Singa
- Department of Civil Engineering, Guru Nanak Dev Engineering College Bidar, Bidar 585403, India;
| | - Suhaib Umer Ilyas
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Shamsul Rahman Mohamed Kutty
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (H.G.Z.); (S.R.M.K.)
| |
Collapse
|
23
|
Shaikh SM, Hassan MK, Nasser M, Sayadi S, Ayesh AI, Vasagar V. A comprehensive review on harvesting of microalgae using Polyacrylamide-Based Flocculants: Potentials and challenges. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Lane TW. Barriers to microalgal mass cultivation. Curr Opin Biotechnol 2021; 73:323-328. [PMID: 34710649 DOI: 10.1016/j.copbio.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Economically successful microalgal mass cultivation is dependent on overcoming several barriers that contribute to the cost of production. The severity of these barriers is dependent on the market value of the final product. These barriers prevent the commercially viable production of algal biofuels but are also faced by any producers of any algal product. General barriers include the cost of water and limits on recycling, costs and recycling of nutrients, CO2 utilization, energy costs associated with harvesting and biomass loss due to biocontamination and pond crashes. In this paper, recent advances in overcoming these barriers are discussed.
Collapse
Affiliation(s)
- Todd W Lane
- Bioresource and Environmental Security Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94550, USA.
| |
Collapse
|
25
|
Potential for Biomass Production and Remediation by Cultivation of the Marine Model Diatom Phaeodactylum tricornutum in Oil Field Produced Wastewater Media. WATER 2021. [DOI: 10.3390/w13192700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While oilfield produced water (PW) is one of the largest, unclaimed wastewater streams of the oil industry, it could potentially be used as a cultivation medium for microalgae. Microalgae could help with the remediation of this water while also delivering biomass that can be transformed into valuable byproducts such as biofuels. The coupling of these two purposes is expected to cut production costs of biofuels while aiding environmental protection. In this study, we compared the cultivation capacity of the marine model diatom Phaeodactylum tricornutum in media at varying salinities and in media composed of PW from two oilfields in the Central Valley of California that differed drastically in the concentration of inorganic and organic constituents. Specifically, we measured the carrying capacity of these media, the maximum growth rates of P. tricornutum, its cellular lipid accumulation capacity, and its capacity to remediate the most polluted PW source. Our study shows that P. tricornutum can successfully adjust to the tested cultivation media through processes of short-term acclimation and long-term adaptation. Furthermore, the cultivation of P. tricornutum in the most heavily polluted PW source led to significant increases in cell yield and improved photosynthetic capacity during the stationary phase, which could be attributed chiefly to the higher levels of nitrate present in this PW source. Chemical water analyses also demonstrated the capability of P. tricornutum to remediate major nutrient content and potentially harmful elements like fluorine and copper. Because P. tricornutum is amenable to advanced genetic engineering, which could be taken advantage of to improve its cultivation resilience and productivity in an economic setting, we propose this study as a step towards essential follow-up studies that will identify the genetic regulation behind its growth in oilfield PW media and its remediation of the PW constituents.
Collapse
|
26
|
Fabrication, Optimization, and Performance of a TiO 2 Coated Bentonite Membrane for Produced Water Treatment: Effect of Grafting Time. MEMBRANES 2021; 11:membranes11100739. [PMID: 34677505 PMCID: PMC8541283 DOI: 10.3390/membranes11100739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
The main problem usually faced by commercial ceramic membranes in the treatment of produced water (PW) is low water flux even though ceramic membrane was well-known with their excellent mechanical, thermal, and chemical properties. In the process of minimizing the problem faced by commercial ceramic membranes, titanium dioxide (TiO2) nanocomposites, which synthesized via a sol-gel method, were deposited on the active layer of the hydrolysed bentonite membrane. This paper studied the influence of grafting time of TiO2 nanocomposite on the properties and performance of the coated bentonite membranes. Several characterizations, which are Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray Spectroscopy (EDX), contact angle, porosity, and average pore size, were applied to both pristine and coated bentonite membranes to compare the properties of the membranes. The deposition of TiO2 nanoparticles on the surface of the coated bentonite membranes was successfully confirmed by the characterization results. The pure water flux performance showed an increment from 262.29 L h−1 m−² bar−1 (pristine bentonite membrane) to 337.05 L h−1 m−² bar−1 (Ti-Ben 30) and 438.33 L h−1 m−² bar−1 (Ti-Ben 60) as the grafting time increase but when the grafting time reached 90 min (Ti-Ben 90), the pure water flux was decreased to 214.22 L h−1 m−² bar−1 which is lower than the pristine membrane. The oil rejection performance also revealed an increase in the oil rejection performance from 95 to 99%. These findings can be a good example to further studies and exploit the advantages of modified ceramic membranes in PW treatment.
Collapse
|
27
|
Evaluation of Galdieria sulphuraria and Chlorella vulgaris for the Bioremediation of Produced Water. WATER 2021. [DOI: 10.3390/w13091183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Produced water (PW) is the largest waste stream generated by the oil and gas industry. Traditional treatment of PW burdens the industry with significant expenses and environmental issues. Alternatively, microalgal-based bioremediation of PW is often viewed as an ecologically safe and sustainable platform for treating PW. Moreover, the nutrients in PW could support algal growth. However, significant dilution of PW is often required in algal-based systems due to the presence of complex chemical contaminants. In light of these facts, the current work has investigated the potential of cultivating Galdieria sulphuraria and Chlorella vulgaris in PW using multiple dilutions; 0% PW, 5% PW, 10% PW, 20% PW, 50% PW and 100% PW. While both algal strains can grow in PW, the current results indicated that G. sulphuraria has a higher potential of growth in up to 50% PW (total dissolved solids of up to 55 g L−1) with a growth rate of 0.72 ± 0.05 g L−1 d−1 and can achieve a final biomass density of 4.28 ± 0.16 g L−1 in seven days without the need for additional micronutrients. Additionally, the algae showed the potential of removing 99.6 ± 0.2% nitrogen and 74.2 ± 8.5% phosphorus from the PW.
Collapse
|
28
|
Sustainable Production of Reclaimed Water by Constructed Wetlands for Combined Irrigation and Microalgae Cultivation Applications. HYDROLOGY 2021. [DOI: 10.3390/hydrology8010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering the increasing pressure on freshwater resources due to the constant increase in water consumption and insufficient wastewater control and treatment, recovering wastewater is a path to overcoming water scarcity. The present work describes the potential of reusing treated wastewater (reclaimed water) for irrigation and production of microalgae biomass in an integrated way, through experimental evaluation of plant and microalgae growth, and creation of an application model. First, two parallel experiments were conducted to evaluate the use of reclaimed water produced by a constructed wetland filled with a mix of solid waste: the irrigation of a set of small pots filled with soil and planted with Tagetes patula L., and the cultivation of microalgae Chlorella sp. and a mixed microalgae population with predominant species of the genus Scenedesmus sp. in shaken flasks and tubular bubble column photobioreactors. Results indicated no negative effects of using the reclaimed water on the irrigated plants and in the cultivated microalgae. The growth indicators of plants irrigated with reclaimed water were not significantly different from plants irrigated with fertilized water. The growth indicators of the microalgae cultivated with reclaimed water are within the range of published data. Second, to apply the results to a case study, the seasonal variability of irrigation needs in an academic campus was used to propose a conceptual model for wastewater recovery. The simulation results of the model point to a positive combination of using reclaimed water for the irrigation of green spaces and microalgae production, supported by a water storage strategy. Water abstraction for irrigation purposes can be reduced by 89%, and 2074 kg dry weight microalgae biomass can be produced annually. Besides the need for future work to optimize the model and to add economical evaluation criteria, the model shows the potential to be applied to non-academic communities in the perspective of smarter and greener cities.
Collapse
|
29
|
The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products. ENERGIES 2020. [DOI: 10.3390/en13236427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The growing demand of microalgal biomass for biofuels, nutraceuticals, cosmetics, animal feed, and other bioproducts has created a strong interest in developing low-cost sustainable cultivation media and methods. Agricultural and food residues represent low-cost abundant and renewable sources of organic carbon that can be valorized for the cultivation of microalgae, while converting them from an environmental liability to an industrial asset. Biochemical treatment of such residues results in the release of various sugars, primarily glucose, sucrose, fructose, arabinose, and xylose along with other nutrients, such as trace elements. These sugars and nutrients can be metabolized in the absence of light (heterotrophic) or the presence of light (mixotrophic) by a variety of microalgae species for biomass and bioproduct production. The present review provides an up-to-date critical assessment of the prospects of various types of agricultural and food residues to serve as algae feedstocks and the microalgae species that can be grown on such residues under a range of cultivation conditions. Utilization of these feedstocks can create potential industrial applications for sustainable production of microalgal biomass and bioproducts.
Collapse
|
30
|
Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. SUSTAINABILITY 2020. [DOI: 10.3390/su12239980] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgal biomass is currently considered as a sustainable and renewable feedstock for biofuel production (biohydrogen, biomethane, biodiesel) characterized by lower emissions of hazardous air pollutants than fossil fuels. Photobioreactors for microalgae growth can be exploited using many industrial and domestic wastes. It allows locating the commercial microalgal systems in areas that cannot be employed for agricultural purposes, i.e., near heating or wastewater treatment plants and other industrial facilities producing carbon dioxide and organic and nutrient compounds. Despite their high potential, the large-scale algal biomass production technologies are not popular because the systems for biomass production, separation, drainage, and conversion into energy carriers are difficult to explicitly assess and balance, considering the ecological and economical concerns. Most of the studies presented in the literature have been carried out on a small, laboratory scale. This significantly limits the possibility of obtaining reliable data for a comprehensive assessment of the efficiency of such solutions. Therefore, there is a need to verify the results in pilot-scale and the full technical-scale studies. This study summarizes the strengths and weaknesses of microalgal biomass production technologies for bioenergetic applications.
Collapse
|
31
|
Review on the Evaluation of the Impacts of Wastewater Disposal in Hydraulic Fracturing Industry in the United States. TECHNOLOGIES 2020. [DOI: 10.3390/technologies8040067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper scrutinized hydraulic fracturing applications mainly in the United States with regard to both groundwater and surface water contamination with the purpose of bringing forth objective analysis of research findings. Results from previous studies are often unconvincing due to the incomplete database of chemical additives; after and before well-founded water samples to define the change in parameters; and specific sources of water pollution in a particular region. Nonetheless, there is a superior chance of both surface and groundwater contamination induced by improper and less monitored wastewater disposal and management practices. This report has documented systematic evidence for total dissolved solids, salinity, and methane contamination regarding drinking water correlated with hydraulic fracturing. Methane concentrations were found on an average rate of 19.2 mg/L, which is 17 times higher than the acceptance rate and the maximum value was recorded as 64.2 mg/L near the active hydraulic fracturing drilling and extraction zones than that of the nonactive sites (1.1 mg/L). The concentration of total dissolved solids (350 g/L) was characterized as a voluminous amount of saline wastewater, which was quite unexpectedly high. The paper concludes with plausible solutions that should be implemented to avoid further contamination.
Collapse
|