1
|
Luo E, Ouyang J, Zhang X, Lu Q, Wei D, Wang Y, Cha Z, Ye C, Li CY, Wei L. Study on the enhancement of low carbon-to-nitrogen ratio urban wastewater pollutant removal efficiency by adding sulfur electron acceptors. PLoS One 2024; 19:e0310222. [PMID: 39446715 PMCID: PMC11500869 DOI: 10.1371/journal.pone.0310222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024] Open
Abstract
The effective elimination of nitrogen and phosphorus in urban sewage treatment was always hindered by the deficiency of organic carbon in the low C/N ratio wastewater. To overcome this organic-dependent barrier and investigate community changes after sulfur electron addition. In this study, we conducted a simulated urban wastewater treatment plant (WWTP) bioreactor by using sodium sulfate as an electron acceptor to explore the removal efficiency of characteristic pollutants before and after the addition of sulfur electron acceptor. In the actual operation of 90 days, the removal rate of sulfur electrons' chemical oxygen demand (COD), ammonia nitrogen, and total phosphorus (TP) with sulfur electrons increased to 94.0%, 92.1% and 74%, respectively, compared with before the addition of sulfur electron acceptor. Compared with no added sulfur(phase I), the reactor after adding sulfur electron acceptor(phase II) was demonstrated more robust in nitrogen removal in the case of low C/N influent. the effluent ammonia nitrogen concentration of the aerobic reactor in Pahse II was kept lower than 1.844 mg N / L after day 40 and the overall concentration of total phosphorus in phase II (0.35 mg P/L) was lower than that of phase I(0.76 mg P/L). The microbial community analysis indicates that Rhodanobacter, Bacteroidetes, and Thiobacillus, which were the predominant bacteria in the reactor, may play a crucial role in inorganic nitrogen removal, complex organic degradation, and autotrophic denitrification under the stress of low carbon and nitrogen ratios. This leads to the formation of a distinctive microbial community structure influenced by the sulfur electron receptor and its composition. This study contributes to further development of urban low-carbon-nitrogen ratio wastewater efficient and low-cost wastewater treatment technology.
Collapse
Affiliation(s)
- Erming Luo
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Qian Lu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yongcheng Wang
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Zhengjiong Cha
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Chengwei Ye
- Guangzhou COSMO Environment Technology CO.,LTD, Guang Zhou, China
| | - Chun ying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Lv J, Du L, Lin H, Wang B, Yin W, Song Y, Chen J, Yang J, Wang A, Wang H. Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning. BIORESOURCE TECHNOLOGY 2024; 393:130008. [PMID: 37984668 DOI: 10.1016/j.biortech.2023.130008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Precisely predicting the concentration of nitrogen-based pollutants from the wastewater treatment plants (WWTPs) remains a challenging yet crucial task for optimizing operational adjustments in WWTPs. In this study, an integrated approach using factor analysis (FA) and machine learning (ML) models was employed to accurately predict effluent total nitrogen (Ntoteff) and nitrate nitrogen (NO3-Neff) concentrations of the WWTP. The input values for the ML models were honed through FA to optimize factors, thereby significantly enhancing the ML prediction accuracy. The prediction model achieved a highest coefficient of determination (R2) of 97.43 % (Ntoteff) and 99.38 % (NO3-Neff), demonstrating satisfactory generalization ability for predictions up to three days ahead (R2 >80 %). Moreover, the interpretability analysis identified that the denitrification factor, the pollutant load factor, and the meteorological factor were significant. The model framework proposed in this study provides a valuable reference for optimizing the operation and management of wastewater treatment.
Collapse
Affiliation(s)
- Jiaqiang Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lili Du
- Central Plains Environmental Protection Co., LCD., Zhengzhou 450000, China
| | - Hongyong Lin
- Central Plains Environmental Protection Co., LCD., Zhengzhou 450000, China
| | - Baogui Wang
- Central Plains Environmental Protection Co., LCD., Zhengzhou 450000, China
| | - Wanxin Yin
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Yunpeng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaji Chen
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
3
|
Gui X, Wang Z, Li K, Li Z, Mao X, Geng J, Pan Y. Enhanced nitrogen removal in sewage treatment is achieved by using kitchen waste hydrolysate without a significant increase in nitrous oxide emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167108. [PMID: 37777127 DOI: 10.1016/j.scitotenv.2023.167108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Kitchen waste hydrolysate (KWH) is an effective replacement for commonly used carbon sources such as sodium acetate (NaAc) and glucose (Glu), in wastewater treatment plants (WWTPs) to enhance the total nitrogen (TN) removal efficiency in sewage and reduce the operating cost of WWTPs. However, KWH utilization introduces complex organic matter that may lead to increased nitrous oxide (N2O) emissions, compared with that of NaAc and Glu, causing significant damage to the atmosphere. Therefore, this study aims to compare the effects of KWH, Glu, and NaAc on N2O emissions in sewage treatment. The results indicated that KWH introduction did not lead to a significant increase in N2O emissions, with a conversion rate of only 5.61 %. Compared with raw sludge, the addition of only Glu and NaAc significantly increased the abundance of the nar G gene, indicating that the readily degradable carbon sources initiated denitrification at a faster rate than KWH. When KWH was added, there was a notable increase in the abundance of genes associated with partial nitrification and denitrification (nir K, hzo, and nos Z). In contrast, Glu and NaAc did not have a significant effect on the nos Z gene. The results suggested that KWH supplementation was more effective to reduce N2O to N2. Moreover, the KWH addition significantly increased the microbial diversity in the sludge and promoted the presence of shortcut nitrification and denitrification bacteria (Comamonadaceae) and denitrification bacteria (Rhodobacteraceae), further indicating the potential of KWH for enhanced denitrification and reduced N2O emissions. Overall, to the best of our knowledge, this is the first study that demonstrated KWH, as a novel and complex organic carbon source, can be safely used in sewage treatment processes to improve the pollutant removal efficiency without causing a significant increase in N2O emissions.
Collapse
Affiliation(s)
- Xuwei Gui
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhengjiang Wang
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kaili Li
- School of chemical engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhenlun Li
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Xinyu Mao
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jinzhao Geng
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yan Pan
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Xu L, Li L, Lu W, Gu Y, Zhuang H, He Q, Zhu L. The modified properties of sludge-based biochar with ferric sulfate and its effectiveness in promoting carbon release from particulate organic matter in rural household wastewater. ENVIRONMENTAL RESEARCH 2023; 231:116109. [PMID: 37178751 DOI: 10.1016/j.envres.2023.116109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The scarcity of carbon sources presents a significant challenge for the bio-treatment of rural domestic wastewater (RDW). This paper presented an innovative approach to address this issue by investigating the supplementary carbon source through in-situ degradation of particulate organic matter (POM) facilitated by ferric sulfate modified sludge-based biochar (SBC). To prepare SBC, five different contents of ferric sulfate (0%, 10%, 20%, 25%, and 33.3%) were added to sewage sludge. The results revealed that the pore and surface of SBC were enhanced, providing active sites and functional groups to accelerate the biodegradation of protein and polysaccharide. During the 8-day hydrolysis period, the concentration of soluble chemical oxidation demand (SCOD) increased and peaked (1087-1156 mg L-1) on the fourth day. The C/N ratio increased from 3.50 (control) to 5.39 (25% ferric sulfate). POM was degraded the five dominant phyla, which were Actinobacteriota, Firmicutes, Synergistota, Proteobacteria, and Bacteroidetes. Although the relative abundance of dominant phyla changed, the metabolic pathway remained unchanged. The leachate of SBC (<20% ferric sulfate) was beneficial for microbes, but an excessive amount of ferric sulfate (33.3% ferric sulfate) could have inhibition effects on bacteria. In conclusion, ferric sulfate modified SBC holds the potential for the carbon degradation of POM in RDW, and further improvements should be made in future studies.
Collapse
Affiliation(s)
- Linji Xu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lin Li
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Wei Lu
- Sanfeng Industry of Chongqing Iron and Steal Group Co., Ltd., Chongqing, 401258, China
| | - Yilu Gu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Qiang He
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lei Zhu
- Jiangsu Yihuan Group Co., Ltd., Yixing, Jiangsu, 214206, China.
| |
Collapse
|
5
|
Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. Int J Mol Sci 2023; 24:ijms24054874. [PMID: 36902302 PMCID: PMC10003231 DOI: 10.3390/ijms24054874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Through excellent absorption and transformation, the macrophyte Myriophyllum (M.) aquaticum can considerably remove phosphorus from wastewater. The results of changes in growth rate, chlorophyll content, and roots number and length showed that M. aquaticum could cope better with high phosphorus stress compared with low phosphorus stress. Transcriptome and differentially expressed genes (DEGs) analyses revealed that, when exposed to phosphorus stresses at various concentrations, the roots were more active than the leaves, with more DEGs regulated. M. aquaticum also showed different gene expression and pathway regulatory patterns when exposed to low phosphorus and high phosphorus stresses. M. aquaticum's capacity to cope with phosphorus stress was maybe due to its improved ability to regulate metabolic pathways such as photosynthesis, oxidative stress reduction, phosphorus metabolism, signal transduction, secondary metabolites biosynthesis, and energy metabolism. In general, M. aquaticum has a complex and interconnected regulatory network that deals efficiently with phosphorus stress to varying degrees. This is the first time that the mechanisms of M. aquaticum in sustaining phosphorus stress have been fully examined at the transcriptome level using high-throughput sequencing analysis, which may indicate the direction of follow-up research and have some guiding value for its future applications.
Collapse
|
6
|
Zhang C, Guo L, Qin J, Chen Z, Deng Z, Wang X. Combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process: A novel economical low-carbon method for nitrate-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116653. [PMID: 36410300 DOI: 10.1016/j.jenvman.2022.116653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
For the sake of exploring a new economical and low-carbon alternative for real nitrate-containing wastewater treatment, a new combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process was developed. The nitrogen removal performance of this process was investigated through long-term operation in a sequencing batch reactor (SBR) and two submerged anaerobic biological filters (SABF). Results showed that the average NO3--N to NO2-N transformation ratio improved to 82.6% with organic carbon source to NO3-N ratio of 1.8, and urea hydrolysis provided sufficient NH4+-N and inorganic carbon to anammox process for nitrogen removal. The influent NH4+-N/NO2--N ratio for subsequent anammox reactor could be adjacent to the optimal ratio of 1.32 during the whole operation. The combined process showed efficient nitrogen removal performance with 85% NO3--N removal, 93.8% total nitrogen removal and total nitrogen loading rate as 1.1 ± 0.5 kg N/(m3·d). High-throughput sequencing analysis results revealed that Genera Thauera, Hyphomicrobium and Candidatus Brocadia were the dominant species responsible for partial denitrification, urea hydrolysis and anammox, respectively. The proposed process was more economically and environmental-friendly than the traditional denitrification process with 51.7% operational cost reduction, 99.7% N2O and 60% CO2 emission decrement, facilitating the sustainable development of the nitrate-containing wastewater treatment industry in the future.
Collapse
Affiliation(s)
- Chuchu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Lu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Jiafu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zexi Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| |
Collapse
|
7
|
Intermittent Microaeration Technology to Enhance the Carbon Source Release of Particulate Organic Matter in Domestic Sewage. WATER 2022. [DOI: 10.3390/w14121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Domestic sewage treatment plants often have insufficient carbon sources in the influent water. To solve this problem, the commonly used technical means include an additional carbon source, primary sludge fermentation, and excess sludge fermentation, but these methods are uneconomical, unsustainable, and not applicable to small-scale wastewater treatment plants. Intermittent microaeration technology has the advantages of low energy-consumption, ease of application, and low cost, and can effectively promote anaerobic digestion of municipal sludge; however little research has been reported on its use to enhance the carbon sources release of particulate organic matter (POM) from domestic wastewater. Therefore, the effect of intermittent microaeration on the carbon source release of POM was evaluated in this study, with POM as the control test. The results showed that the release concentration of soluble chemical oxygen demand (SCOD) was the highest on day 4 under microaerobic conditions, and the concentrations of SCOD, NH4+-N, and PO43−-P in the liquid phase were 1153, 137.1, and 13 mg/L, respectively. Compared with the control group, the SCOD concentration increased by 34.2%, and the NH4+-N and PO43−-P concentrations decreased by 18.65% and 17.09%, respectively. Intermittent microaeration can effectively promote the growth of Paludibacter, Actinomyces, and Trichococcus hydrolytic fermentation functional bacteria. Their relative abundances increased by 282.83%, 21.77%, and 23.47%, respectively, compared with the control group. It can simultaneously inhibit the growth of acetate-type methanogenic archaea, Methanosaeta and Methanosarcina, with a decrease in relative abundances of 16.81% and 6.63%, respectively. The aforementioned data show that intermittent microaeration can not only promote the hydrolysis of POM, but can also reduce the loss of acetic acid carbon source, which is a cost-effective technical way to enhance the release of a carbon source of particulate organic matter in domestic sewage.
Collapse
|
8
|
Technological Parameters of Rotating Electrochemical and Electrobiological Disk Contactors Depending on the Effluent Quality Requirements. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soilless tomato cultivation wastewater, with typically low COD, high concentrations of phosphorus, and oxidized forms of nitrogen, may be effectively treated in a rotating electrochemical disk contactor (RECDC) and in a bioelectrochemical reactor (BER), such as a rotating electrobiological disk contactor (REBDC). The aim of this study was to determine the technological parameters of both reactors, i.e., electric current density (J) and hydraulic retention time (HRT), depending on the effluent quality requirements. The study was conducted with four one-stage RECDCs and with four one-stage REBDCs, at four hydraulic retention times, i.e., 4, 8, 12, and 24 h, and electric current densities of 0.63, 1.25, 2.50, 5.00, and 10.00 A/m2. It was demonstrated that soilless tomato cultivation wastewater could be effectively treated in electrochemical and electrobiological disk contactors, and then discharged to sewage system facilities. In a RECDC, the highest denitrification (53.4%) and dephosphatation (99.8%) performance was achieved at J = 10.0 A/m2 and HRT = 24 h. If the effluents are to be discharged to natural reservoirs, their effective treatment is only feasible in a REBDC. The bioelectrochemical disk contactor ensured over 90% dephosphatation effectiveness. At HRT = 24 h and all electric current densities studied, the concentrations of pollutants in the effluent met requirements set for industrial wastewater discharged into natural waters and the ground. By applying J = 2.5 A/m2 and HRT = 24 h in the REBDC, it was possible to achieve a phosphorus concentration below 3.0 mg P/L and concentrations of ammonia nitrogen and nitrites lower than the permissible levels for treated industrial wastewater introduced to waters and to the ground. Given the nitrate concentration (exceeding 30 mg N/L), an external carbon source is recommended to aid a treatment process that uses a technological system with a REBDC. Technological schemes were proposed for wastewater treatment plants (WWTPs) with a RECDC and a REBDC, for discharging treated wastewater to natural waters, the ground, and sewage systems.
Collapse
|