1
|
Liao Y, Li S, Ji G. Graphene oxide stimulated low-temperature denitrification activity of microbial communities in lake sediments by enhancing anabolism and inhibiting cellular respiration. CHEMOSPHERE 2024; 350:141090. [PMID: 38169199 DOI: 10.1016/j.chemosphere.2023.141090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Nitrate pollution in fresh water is becoming increasingly serious. In this study, the effects of temperature and graphene oxide materials on the potential functions of denitrification communities in lake sediments were investigated by metagenome. The addition of graphene oxide significantly affected the abundance of denitrification genes such as Nap, Nos, and enhanced the contribution of Pseudomonas, making low temperature and material addition conducive to the denitrification process. Module network implied that low temperature increased the centrality of denitrification in community functions. At low temperatures, graphene oxide enhanced community anabolism by stimulation organic carbon consumption and regulating the gene abundance in the citric acid cycle and the semi-phosphorylation Entner-Doudoroff, thus possibly stimulating extracellular polymeric substances (EPS) synthesis and secretion. In addition, graphene oxide may also regulate the transfer of reducing electrons from NADH to denitrifying enzymes by affecting the gene abundances of complex I and complex IV.
Collapse
Affiliation(s)
- Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Institute of Whole Process Consulting, Chongqing CISDI Engineering Consulting Co. Ltd., Chongqing, 400013, China
| | - Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Feng H, Jin A, Yin X, Hong Z, Ding Y, Zhao N, Chen Y, Zhang Y. Enhancing biocathode denitrification performance with nano-Fe 3O 4 under polarity period reversal. ENVIRONMENTAL RESEARCH 2024; 241:117641. [PMID: 37972808 DOI: 10.1016/j.envres.2023.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The presence of excessive concentrations of nitrate poses a threat to both the environment and human health, and the bioelectrochemical systems (BESs) are attractive green technologies for nitrate removal. However, the denitrification efficiency in the BESs is still limited by slow biofilm formation and nitrate removal. In this work, we demonstrate the efficacy of novel combination of magnetite nanoparticles (nano-Fe3O4) with the anode-cathode polarity period reversal (PPR-Fe3O4) for improving the performance of BESs. After only two-week cultivation, the highest cathodic current density (7.71 ± 1.01 A m-2) and NO3--N removal rate (8.19 ± 0.97 g m-2 d-1) reported to date were obtained in the PPR-Fe3O4 process (i.e., polarity period reversal with nano-Fe3O4 added) at applied working voltage of -0.2 and -0.5 V (vs Ag/AgCl) under bioanodic and biocathodic conditions, respectively. Compared with the polarity reversal once only process, the PPR process (i.e., polarity period reversal in the absence of nano-Fe3O4) enhanced bioelectroactivity through increasing biofilm biomass and altering microbial community structure. Nano-Fe3O4 could enhance extracellular electron transfer as a result of promoting the formation of extracellular polymers containing Fe3O4 and reducing charge transfer resistance of bioelectrodes. This work develops a novel biocathode denitrification strategy to achieve efficient nitrate removal after rapid cultivation.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, China; School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, 310018, China
| | - Anan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xianbin Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhicheng Hong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Nannan Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yufan Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yifeng Zhang
- Department of Environmental Engineering Technical University of Denmark, DK, 2800, Lyngby, Denmark.
| |
Collapse
|
3
|
Gao H, Yang L, Song X, Guo M, Li B, Cui X. Sources and hydrogeochemical processes of groundwater under multiple water source recharge condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166660. [PMID: 37657547 DOI: 10.1016/j.scitotenv.2023.166660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Ecological water replenishment (EWR) is an essential approach for improving the quantity and quality of regional water. The Chaobai River is a major river in Beijing that is replenished with water from multiple sources, including reclaimed water (RW), the South-North Water Transfer Project (SNTP), reservoir discharge (RD). The effects of multiple water source recharge (MWSR) on groundwater quality remain unclear. In this study, hydrochemical ions, isotopes (δ2H-H2O, δ18O-H2O, δ15N-NO3-, and δ18O-NO3-), mixing stable isotope analysis in R (MixSIAR), and hydrogeochemical modeling were used to quantify the contributions and impacts of different water sources on groundwater and to propose a conceptual model. The results showed that during the period before reservoir discharge, RW and SNTP accounted for 38 %-41 % and 54 % of the groundwater in their corresponding recharge areas, respectively. The groundwater in the RW recharge area contained high levels of Na+ and Cl- leading to the precipitation of halite, and was the main factor for the spatial variation in groundwater hydrochemical components. The surface water changed from Na·K - Cl·SO4 type to Ca·Mg - HCO3 type which was similar to groundwater after reservoir discharge. RD accounted for 30 % of the groundwater; however, it did not change the hydrochemical type of groundwater. Dual nitrate stable isotopes and MixSIAR demonstrated that RW was the primary source of NO3- in groundwater, contributing up to 76-89 %, and reservoir discharge effectively reduced the contribution of RW. δ15N-NO3- or δ18O-NO3- in relation to NO3-N suggests that denitrification is the main biogeochemical process of nitrogen in groundwater, whereas water recharge from the SNTP and RD reduces denitrification and dilutes NO3-. This study provides insights into the impact of anthropogenically controlled ecological water replenishment from different water sources on groundwater and guides the reasonable allocation of water resources.
Collapse
Affiliation(s)
- Heng Gao
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lihu Yang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianfang Song
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minli Guo
- Beijing Water Science and Technology Institute, Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing 100048, China
| | - Binghua Li
- Beijing Water Science and Technology Institute, Beijing Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing 100048, China
| | - Xu Cui
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Goyal D, Haritash AK, Singh SK. Hydrogeochemical characterisation and geospatial analysis of groundwater for drinking water quality in Ludhiana district of Punjab, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:653. [PMID: 37162599 DOI: 10.1007/s10661-023-11220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
This study characterises the quality of groundwater for the Ludhiana district of Punjab, India by analysing water samples collected from 152 locations spread across 3767 km2. The samples were analysed for 18 parameters consisting of pH, EC, TDS, TA, TH, major anions and cations. The parameter values have been used to calculate the drinking water quality index of the study area which suggests that 2.6, 57.9, 32.9, 4 and 2.6% of the samples fall under the excellent, good, poor, very poor and unsuitable categories, respectively. The sequence of abundance for ions (in meq/l) as revealed from the laboratory tests is Na+ (37.1%) > Ca2+ (30.8%) > Mg2+ (29.1%) > K+ (2.8%) for cations and HCO3- (80%) > Cl¯ (8.9%) > CO32- (6.5%) > SO42- (3.9%) > NO3-, F-, PO43- (< 1%) for anions. The spatial variability of these parameters has been depicted through the use of interpolation maps. Evaluation of different ionic ratios indicates that carbonate weathering and silicate weathering are both significantly affecting the groundwater chemistry with a slight dominance of carbonate weathering. Also, the ion exchange process is taking place in the area as confirmed by CAI index values. In terms of saturation index, the groundwater is undersaturated with respect to halite, fluorite and sylvite, whereas it is supersaturated for calcite, dolomite and aragonite minerals. The principal components in PCA explained 75.4% of the total variance with 29.1 and 28.3% contributions from PC1 and PC2. Both of these components indicate towards the geogenic and anthropogenic influence on groundwater mineralization of the area. The analysis suggests that groundwater for the study area is suitable for drinking in most of the region expect in a few places. Such a study could be used to understand the current status of groundwater quality in the area, the results of which can be used to prevent further contamination and sustain the resource for the future.
Collapse
Affiliation(s)
- Deepali Goyal
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India.
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| | - S K Singh
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
5
|
Gržinić G, Piotrowicz-Cieślak A, Klimkowicz-Pawlas A, Górny RL, Ławniczek-Wałczyk A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G, Wolska L. Intensive poultry farming: A review of the impact on the environment and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160014. [PMID: 36368402 DOI: 10.1016/j.scitotenv.2022.160014] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Poultry farming is one of the most efficient animal husbandry methods and it provides nutritional security to a significant number of the world population. Using modern intensive farming techniques, global production has reached 133.4 mil. t in 2020, with a steady growth each year. Such intensive growth methods however lead to a significant environmental footprint. Waste materials such as poultry litter and manure can pose a serious threat to environmental and human health, and need to be managed properly. Poultry production and waste by-products are linked to NH3, N2O and CH4 emissions, and have an impact on global greenhouse gas emissions, as well as animal and human health. Litter and manure can contain pesticide residues, microorganisms, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (at improper ratios) and other pollutants which can lead to air, soil and water contamination as well as formation of antimicrobial/multidrug resistant strains of pathogens. Dust emitted from intensive poultry production operations contains feather and skin fragments, faeces, feed particles, microorganisms and other pollutants, which can adversely impact poultry health as well as the health of farm workers and nearby inhabitants. Fastidious odours are another problem that can have an adverse impact on health and quality of life of workers and surrounding population. This study discusses the current knowledge on the impact of intensive poultry farming on environmental and human health, as well as taking a look at solutions for a sustainable future.
Collapse
Affiliation(s)
- Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland.
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Rafał L Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Lidia Piechowicz
- Department of Microbiology, Faculty of Medicine, Medical University of Gdansk, Dębowa Str. 25, 80-204 Gdansk, Poland
| | - Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Maciej Tankiewicz
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| |
Collapse
|
6
|
Abstract
Water scarcity and pollution have arisen as global issues in the twenty-first century [...]
Collapse
|