1
|
Varshney S, O'Connor OL, Gora AH, Rehman S, Kiron V, Siriyappagouder P, Dahle D, Kögel T, Ørnsrud R, Olsvik PA. Mixture toxicity of 6PPD-quinone and polystyrene nanoplastics in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123835. [PMID: 38521395 DOI: 10.1016/j.envpol.2024.123835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution, including micro- and nanoplastics, is a growing concern. Tyre-wear particles (TWPs) are the second largest source of microplastics in the ocean following abrasion of synthetic fibres. In addition to the particles themselves, TWPs contain many harmful chemicals, including 6PPD. This chemical reacts with atmospheric ozone and forms the toxic compound 6PPD-quinone (6PPDq), which poses a danger to aquatic life. There is a knowledge gap in understanding risks associated with the combined toxicity of nanoplastics (NPs) and 6PPDq. The present study aimed to investigate the toxicity of NPs and 6PPDq on adult zebrafish using phenotypic (behaviour, histology) and transcriptomic endpoints. Zebrafish were exposed to four treatments: control (contaminant-free), 50 μg/L 6PPDq, 3 mg/L polystyrene (PS)-NPs, and a combination of 50 μg/L 6PPDq and 3 mg/L PS-NPs. We did not observe locomotory dysregulation in zebrafish exposed to NPs. However, we found significant hyperlocomotion in zebrafish exposed to 6PPDq and this effect was even more substantial after co-exposure with PS-NPs. This study explores the molecular mechanisms behind these effects, identifying genes associated with neurotransmitters and fatty acid metabolism that were dysregulated by the co-exposure. Transcriptomic analysis further showed that both 6PPDq and PS-NPs impacted cellular processes associated with sterol biosynthesis, cholesterol metabolism, and muscle tissue development. The effects on these mechanisms were stronger in co-exposed zebrafish, indicating a heightened risk to cellular integrity and mitochondrial dysfunction. These results highlight the significance of mixture toxicity when studying the effects of NPs and associated chemicals like 6PPDq.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Olivia L O'Connor
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Tanja Kögel
- Institute of Marine Research, Bergen, Norway
| | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
2
|
Bessa Santos RM, Farias do Valle Junior R, Abreu Pires de Melo Silva MM, Tarlé Pissarra TC, Carvalho de Melo M, Valera CA, Leal Pacheco FA, Sanches Fernandes LF. A framework model to integrate sources and pathways in the assessment of river water pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123661. [PMID: 38417605 DOI: 10.1016/j.envpol.2024.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Metal and nutrient pollution, soil erosion, and alterations in climate and hydrology are prevalent issues that impact the water quality of riverine systems. However, integrated approaches to assess and isolate causes and paths of river water pollution are scarce, especially in the case of watersheds impacted by multiple hazardous activities. Therefore, a framework model for investigating the multiple sources of river water pollution was developed. The chosen study area was the Paraopeba River basin located in the Minas Gerais, Brazil. Besides multiple agriculture, industrial, and urban pollution sources, this region was profoundly affected by the rupture of the B1 tailings dam (in January 2019) at the Córrego do Feijão mine, resulting in the release of metal-rich waste. Considering this situation, thirty-nine physicochemical and hydromorphological parameters were examined in the Paraopeba River basin, in the 2019-2023 period. The analysis involved various statistical techniques, including bivariate and multivariate methods such as correlation analysis, principal component analysis, and clustering. The Paraopeba River was mainly impacted by metal contamination resulting from the dam collapse, whereas nutrient contamination, mainly from urban and industrial discharges, predominantly affected its tributaries. Additionally, the elevated concentrations of aluminum, iron, nitrate, and sulfate in both main river and tributaries can be attributed to diffuse and point source pollution. In terms of hydromorphology and soil type, the interaction between woody vegetation and erosion-resistant soils, especially latosols, contributes to the stability of riverbanks in the main river. Meanwhile, in the tributaries, the presence of neosols and sparse vegetation in urbanized areas promoted riverbank erosion potentially amplifying pollution. While the study was conducted in a particular watershed, the findings are based on a methodology that can be applied universally. Hence, the insights on surface water quality from this research can be a valuable resource for researchers studying watersheds with diverse pollution sources.
Collapse
Affiliation(s)
- Regina Maria Bessa Santos
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Renato Farias do Valle Junior
- Instituto Federal do Triângulo Mineiro, Campus Uberaba, Laboratório de Geoprossessamento, Uberaba, MG 38064-790, Brazil
| | | | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Marília Carvalho de Melo
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143 Bairro Serra Verde, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Alberto Valera
- Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba, MG 38061-150, Brazil
| | - Fernando António Leal Pacheco
- Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Luís Filipe Sanches Fernandes
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Donadelli V, Di Marco P, Mandich A, Finoia MG, Cardinaletti G, Petochi T, Longobardi A, Tibaldi E, Marino G. Effects of Dietary Plant Protein Replacement with Insect and Poultry By-Product Meals on the Liver Health and Serum Metabolites of Sea Bream ( Sparus aurata) and Sea Bass ( Dicentrarchus labrax). Animals (Basel) 2024; 14:241. [PMID: 38254412 PMCID: PMC10812684 DOI: 10.3390/ani14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The liver health of Gilthead sea bream and European sea bass, fed with fish meal-free diets, including various proportions of plant proteins, as well as insect and poultry by-product meals, was investigated through biochemical and histological analyses using a new liver index (LI) formula. Four isoproteic (45% Dry Matter, DM) and isolipidic (20% DM) diets were compared, including a plant-based control diet (CV) and three other test diets, in which 40% of a plant protein-rich ingredient mixture was replaced with meals from Hermetia illucens (H40) or poultry by-product (P40) alone, or in combination (H10P30). The trials lasted 12 and 18 weeks for sea bream and sea bass, respectively. The results obtained thus far highlighted species-specific differences in the physiological response to dietary changes. In sea bream, the biochemical and histological responses suggest favorable physiological and liver health statuses, with higher serum cholesterol (CHO) and triglyceride (TAG) levels, as well as moderate hepatocyte lipid accumulation, with the H10P30 diet compared to the CV (p < 0.05). In sea bass, all diets resulted in elevated serum TAG levels and lipid accumulation in the liver, particularly in fish fed the P40 one (p < 0.05), which resulted in the highest LI, coupled with a higher frequency of severe lipid accumulation, hypertrophy, cord loss, peripheral nuclei displacement, and pyknosis. In conclusion, sea bream adapted well to the test diets, whereas sea bass exhibited altered hepatic lipid metabolism leading to incipient liver steatosis, likely due to the high lipid contents of the diets, including the insect and poultry meals. The LI formula developed in this study proved to be a reliable tool for assessing the effects of dietary changes on the liver health of sea bream and sea bass, consistent with biochemical and histological findings.
Collapse
Affiliation(s)
- Valeria Donadelli
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Patrizia Di Marco
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Alberta Mandich
- Interuniversity Consortium INBB—Biostructures and Biosystems National Institute, 00136 Rome, Italy;
| | - Maria Grazia Finoia
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy; (G.C.); (E.T.)
| | - Tommaso Petochi
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Alessandro Longobardi
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Emilio Tibaldi
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy; (G.C.); (E.T.)
| | - Giovanna Marino
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| |
Collapse
|
4
|
Zulfahmi I, El Rahimi SA, Suherman SD, Almunawarah A, Sardi A, Helmi K, Nafis B, Perdana AW, Adani KH, Admaja Nasution IA, Sumon KA, Rahman MM. Acute toxicity of palm oil mill effluent on zebrafish (Danio rerio Hamilton-Buchanan, 1822): Growth performance, behavioral responses and histopathological lesions. CHEMOSPHERE 2023; 340:139788. [PMID: 37574082 DOI: 10.1016/j.chemosphere.2023.139788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Evaluating the toxicity of Palm Oil Mill Effluent (POME) is critical as part of the effort to develop waste management regulations for the palm oil industry. In this study, we investigated the acute toxicity of POME on growth performance, behavioral response, and histopathology of gill and liver tissues of zebrafish (Danio rerio). In total, 550 adult male zebrafish were used for the toxicity experiment including range finding test, acute toxicity test, growth performance and behaviour test. Static non-renewal acute toxicity bioassays were conducted by exposing fish to POME (1.584-9.968 mL/L) for 96 h. Growth performance, behavior response, and histopathological lesions in untreated and POME treated (96-h LC50: 5.156 mL/L) fish were measured at 24, 48, 72 and 96 h. Time-dependent significant decline in body length and body weight of POME-exposed zebrafish was observed. Furthermore, several behavioral changes were recorded, including hyperactivity, loss of balance, excessive mucus secretion, and depigmentation. Decreasing operculum movement and oxygen consumption rate as well as alterations in gill tissues (i.e. hyperplasia, hypertrophy, hemorrhage, and necrosis) of POME-exposed zebrafish were observed, suggesting a dysfunction in respiratory performance. On the other hand, liver tissue alterations (congestion, hemorrhage, hyperplasia, shrinkage of hepatocytes, hydrophilic degeneration, and necrosis) indicated a disruption in detoxification performance. We conclude that exposure to POME at acute concentration caused histopathological lesions both in gill and liver tissue along with changes in fish behaviors which disrupted respiratory and detoxification performance, resulting in mortality and reduced growth of zebrafish. These findings might provide valuable information for guiding POME management and regulation.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Sayyid Afdhal El Rahimi
- Department of Marine Science, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Saed Dedi Suherman
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Almunawarah Almunawarah
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Arif Sardi
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Kamaliah Helmi
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khalisah Huwaina Adani
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ihdina Alfi Admaja Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
5
|
Zargari A, Nejatian M, Abbaszadeh S, Jahanbin K, Bagheri T, Hedayati A, Sheykhi M. Modulation of toxicity effects of CuSO 4 by sulfated polysaccharides extracted from brown algae (Sargassum tenerrimum) in Danio rerio as a model. Sci Rep 2023; 13:11429. [PMID: 37454230 PMCID: PMC10349887 DOI: 10.1038/s41598-023-38549-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Copper is widely used in agriculture and aquaculture due to its high disinfection properties and relatively low cost. However, the increase in copper concentration due to evaporation can lead to water reservoir pollution, which can harm the health of consumers. The present study aimed to determine the role of sulfated polysaccharides (SPs) extracted from Sargassum tenerimum algae in reducing lesions caused by the heavy metal copper. Zebrafish (Danio rerio) were used as a human model in five treatments. The negative and positive control groups were fed a diet containing zero percent of SPs, while the experimental groups were fed 0.5%, 1%, and 1.5% of SPs in three treatments for 56 days, finally CuSO4 was exposed only to the positive control group and the groups fed with SPs. Results showed a significant decrease in the activity level of ALT enzymes (39-16 U/mL), AST (67-46 U/mL), and ALP (485-237 U/mL), confirming the results obtained from histopathological studies in CuSO4 exposed groups. The addition of SPs to the diet resulted in a significant reduction (sig < 0.05) of mortalities due to the decrease of tissue damage. Additionally, due to the anti-inflammatory properties and the protective effect of SPs, a significant decrease (sig < 0.05) was observed in the relative expression of Il-1β and Tnf-α genes.
Collapse
Affiliation(s)
- Ashkan Zargari
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sepideh Abbaszadeh
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kambiz Jahanbin
- Faculty of Agricultural Engineering, Department of Food Science and Technology, Shahrood University of Technology, Shahrood, Iran
| | - Tahereh Bagheri
- Offshore Water Research Center (OWRC), Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran
| | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Monireh Sheykhi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Voinea IC, Alistar CF, Banciu A, Popescu RG, Voicu SN, Nita-Lazar M, Vasile GG, Gheorghe S, Croitoru AM, Dolete G, Mihaiescu DE, Ficai A, Popa M, Marutescu L, Pircalabioru GG, Craciun N, Avramescu S, Marinescu GC, Chifiriuc MC, Stan MS, Dinischiotu A. Snapshot of the pollution-driven metabolic and microbiota changes in Carassius gibelio from Bucharest leisure lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163810. [PMID: 37127150 DOI: 10.1016/j.scitotenv.2023.163810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country. The lowest level of oxidative stress was recorded in the case of fish collected from the Vacaresti lake, a protected wetland area where aquatic organisms live in wild environmental conditions. In contrast, significant oxidative changes were observed in the hepatopancreas and gills of fish from the Chitila, Floreasca and Tei lakes, such as reduced glutathione S-transferase activity and glutathione level, and increased degree of lipid peroxidation, being correlated with elevated levels of pesticides (such as 2,4'-methoxychlor) and Escherichia coli load in these organs. Although different patterns of pollutants' accumulation were observed, no important interindividual variations in cytosine methylation degree were determined. In conclusion, the presence and concentrations of metals, pesticides and antibiotics varied with the analyzed tissue and sampling site, and were correlated with changes in the cellular redox homeostasis, but without significantly affecting the epigenetic mechanisms.
Collapse
Affiliation(s)
- Ionela C Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Cristina F Alistar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Alina Banciu
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Roua G Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Gabriela Geanina Vasile
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Luminita Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania; Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Nicolae Craciun
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Sorin Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania; Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - George Catalin Marinescu
- Asociația Independent Research, 58 Timisului, 012416 Bucharest, Romania; Blue Screen SRL, 58 Timisului, 012416 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania; Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
7
|
Villa-Villaseñor IM, Yáñez-Rivera B, Rueda-Jasso RA, Herrera-Vargas MA, Hernández-Morales R, Meléndez-Herrera E, Domínguez-Domínguez O. Differential sensitivity of offspring from four species of goodeine freshwater fish to acute exposure to nitrates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1014814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitrate-nitrogen (NO3-N) pollution related to anthropogenic activities is increasing in freshwater ecosystems. Knowledge about NO3-N sensitivity in freshwater wild fish is needed to understand the differential tolerance between species. Goodeinae is a subfamily of 41 endemic fishes that inhabit central Mexico, with 33 species in the IUCN red list and three extinct. Distributional patterns suggest tolerant and sensitive goodeines related to the conservation gradient of freshwater ecosystems. Four species with a differential distribution and tolerance were selected to evaluate their physiological responses to NO3-N. Fish were exposed to different NO3-N concentrations for 96 h and the median lethal concentration (LC50) was determined. Swimming disorders plus gill and liver histopathological indexes were estimated and incorporated into an Integrated Biomarker Response (IBR) for each species. Skiffia lermae (LC50 = 474.332 mg/L) and Xenotoca variata (LC50 = 520.273 mg/L) were more sensitive than Goodea atripinnis (LC50 = 953.049 mg/L) and Alloophorus robustus (LC50 = 1537.13 mg/L). The typical histological damage produced by NaNO3-N exposure was fusion of secondary lamellae in gills. This was present in all species and cellular degeneration was observed at the highest concentrations. Secondary lamellae aneurysms were only observed in G. atripinnis. Liver alterations included vascular dilation in hepatic sinusoids, hyperemia and nuclear hypertrophy; higher concentrations produced hepatocyte cytoplasmic vacuolation and reduced frequency of cell nuclei. Behavioral and histopathological alterations could explain the differential species sensitivity. The results suggest that species which preserve gill function and transfer the task of detoxification to the liver might have the best chance of surviving in polluted environments. Moreover, species previously considered as tolerant may be highly susceptible to NaNO3-N exposure. Therefore, it is necessary to closely monitor NaNO3-N concentrations in freshwater ecosystems and, if possible, reduce their levels to avoid the loss of wild populations.
Collapse
|
8
|
Hu C, Sun B, Tang L, Liu M, Huang Z, Zhou X, Chen L. Hepatotoxicity caused by methylparaben in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106255. [PMID: 35905631 DOI: 10.1016/j.aquatox.2022.106255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Parabens are a class of aquatic pollutants of emerging concern, among which methylparaben (MeP) causes severe pollution worldwide. However, aquatic toxicology of MeP remains largely unknown, which hinders ecological risk evaluation. In the present study, adult zebrafish were exposed to environmentally realistic concentrations (0, 1, 3, and 10 μg/L) of MeP for 28 days, with objectives to reveal the hepatotoxicity based on transcriptional, biochemical, metabolomics, and histopathological evidences. The results showed that MeP subchronic exposure induced the occurrence of hepatocellular vacuolization in zebrafish. The most severe symptom was noted in 10 μg/L MeP-exposed female liver, which was characterized by rupture of cell membrane and small nuclei. In addition, MeP exposure disturbed the balance between oxidative stress and antioxidant capacity. Lipid metabolism dynamics across gut, blood, and liver system were significantly dysregulated after MeP exposure by altering the transcriptions of lipid nuclear receptors and concentrations of key metabolites. Metabolomic profiling of MeP-exposed liver identified differential metabolites mainly belonging to fatty acyls, steroids, and retinoids. In particular, hepatic concentration of cortisol was increased in male liver by MeP pollutant, implying the activation of stress response. Exposure to MeP also inhibited the synthesis and conjugation of primary bile acid (e.g., 7-ketolithocholic acid and taurochenodeoxycholic acid) in female liver. Furthermore, degradation of biologically active molecules, including retinoic acid and estradiol, was enhanced in the liver by MeP. Overall, the present study highlights the hepatotoxicity caused by MeP pollutant even at environmentally realistic concentrations, which necessitates an urgent and accurate risk assessment.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Factors Affecting Water Quality and the Structure of Zooplankton Communities in Wastewater Reservoirs of the Right-Bank Sorbulak Canal System (South-Eastern Kazakhstan). WATER 2022. [DOI: 10.3390/w14111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work aims to assess the main factors that determined the variability of environmental and biological variables in wastewater reservoirs of the Right-Bank Sorbulak Canal system (South-Eastern Kazakhstan). We used standard methods for the collection and analysis of data, as well as the principal components analysis (PCA) to assess the relationship between environmental and biological indicators. The average depth of the surveyed reservoirs was 4.1–10.0 m, temperature—21.7–25.7 °C, pH—9.41–10.00, permanganate index—16.22–19.07 mgO/dm3, N-NO2—0.03–0.13, N-NO3—1.28–3.00, N-NH4—0.30–0.53, PO4—0.14–0.39, Si—3.69–8.26, Mn—0.03–0.07, Fe—0.34–0.38 mg/dm3. The content of Cd, Co, Pb, Zn, and Cr was low, Cu—0.012–0.036 mg/dm3. The water quality is influenced by the wastewater composition, chemical interactions, morphometric and physical-chemical conditions of the reservoir, pollution of the coastal area, and secondary water pollution. Changes in the species composition and zooplankton abundance reflected the instability of external conditions. PCA showed the priority influence of carbonates, bicarbonates, magnesium, temperature, nutrients, and heavy metals on zooplankton structure. The results obtained demonstrate the indicator significance of zooplankton, and the methodological approaches can be used to assess water bodies with the complex pollution located in other regions.
Collapse
|