1
|
Xu L, Chen H, Sun J, Wu Z, Zhou X, Cheng H, Chen Z, Zhou H, Wang Y. Enrichment of marine microbes to remove nitrogen of urea wastewater under salinity stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122940. [PMID: 39423622 DOI: 10.1016/j.jenvman.2024.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Salinity (NaCl) and urea concentration significantly affect the diversity, structural and physiological function of microbial communities in the biological treatment of wastewater. However, the responses of microbial in high salt and urea wastewater remain elusive. Here, we investigated microbial community function and assembly of four regions using gradient domestication experiment combined with 16S rRNA gene sequencing and statistical methods. The results showed that with the increase of salinity and urea concentration, the consortium Xiamen could still remove most urea, while the other three consortia could not. The alpha diversity of microbial community initially decreased and then increased, showing a recovery trend. After domestication, the consortium Xiamen exhibited high physiological activity and complex network structure, and the community assembly process changed from stochastic to deterministic during the domestication. Furthermore, the keystones with low abundance were associated with urea removal and important for maintain the complexity of the networks, while Arenibacter and Oceanimonas were found to be keystones in maintaining efficient urea removal in harsh environments. To sum up, environmental effects dominated by salinity and urea concentration stress drove the community assembly and species coexistence that underpinned the microbial differentiation pattern at a geographic scale. These results provided new sights for elucidate how microbial response to salinity and urea during wastewater treatment.
Collapse
Affiliation(s)
- Longqi Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hui Chen
- Institute of Zhejiang University-Quzhou, Quzhou, 32400, China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiangdan Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
2
|
Lian Y, Song J, Mumby W, Suo H, Zhang Y. The correlation between flavor formation and microbial community dynamics during the fermentation of zha cai. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6233-6241. [PMID: 38451122 DOI: 10.1002/jsfa.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Zha cai, a pickled vegetable with unique flavors, is produced by fermenting fresh mustard tubers. In this study, the main physicochemical indices and volatile flavor compounds were determined in three fermentation periods. The bacterial and fungal communities in the three fermentation periods of zha cai were also monitored using high-throughput sequencing. Key microbial communities were identified based on significant correlations with flavor substances. RESULTS Firmicutes and Proteobacteria were the main bacterial phyla found within the three fermentation periods. Lactic acid bacteria, namely Lactobacillus, was the predominant bacteria found at the genus level. Ascomycetes and Stenotrophomonas were the major fungal phyla found in the three fermentation periods. Yeast, namely Debaryomyces, was the predominant fungus found at the genus level. A total of 42 bacterial genera were negatively correlated with volatile flavor substances of zha cai, and 37 bacterial genera were positively correlated. Meanwhile, a total of 47 genera of fungi were negatively correlated with the volatile flavor substances of zha cai, while 50 genera were positively correlated. Several microbial genera were significantly correlated with volatile flavor compounds, including Lactobacillus, Halomonas, Rhodococcus, and Debaryomyces. CONCLUSION This study identified the microbial classes that positively regulate the flavor of zha cai which could provide valuable help for flavor modulation in zha cai production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinyin Lian
- School of Food Science, Southwest University, Chongqing, China
- National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Chongqing, China
| | - Jiajia Song
- School of Food Science, Southwest University, Chongqing, China
| | - William Mumby
- College of Health and Human Sciences, Florida State University, Tallahassee, Florida, USA
| | - Huayi Suo
- School of Food Science, Southwest University, Chongqing, China
| | - Yu Zhang
- School of Food Science, Southwest University, Chongqing, China
- National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Vyas KD, Singh A. Juncus rigidus high biomass and cellulose productivity under wastewater salinity stress - A paradigm shift to the valorization of RO reject water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173076. [PMID: 38734100 DOI: 10.1016/j.scitotenv.2024.173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The use of water purifiers is intensively catching up and disposing of reverse osmosis reject water is of great concern. Reject water management using conventional methods is costly and harmful to the environment. To address this issue, the present study aims to utilize reverse osmosis reject wastewater using an eco-friendly approach. Juncus rigidus was treated with reject wastewater containing different salinity levels. Wastewater-treated plant dry biomass increased with increasing reject water salinity, and 625.3 g dry biomass recovered in treatment-B (~18,520 ppm). However, ~23,220 ppm wastewater salinity was lethal to the plants. The cellulose was extracted by alkali hydrolysis. The cellulose content in the wastewater-treated biomass was significantly higher in Treatment-B compared to both the control and Treatment-A (~12,744 ppm). The water salinity enhanced the cellulose (26.49 %) production in J. rigidus. Cellulose purity was confirmed using spectroscopic and thermogravimetric means. XRD shows highest crystallinity Index (77.29) with a d-spacing of 4.7 Å and 5.7 nm crystallite size in treatment-B. FTIR results reveal well-defined relevant peaks for OH, CH, CO, CH2, C-O-C, CO groups in treatment-B cellulose. Salinity impacts carboxyl groups in treatment B cellulose with a sharper and intense peak at 1644 cm-1 responsible for water absorption. Treatment-B exhibits higher thermal stability due to increased crystallinity. DSC shows endothermic depolymerization of cellulose with distinct peaks for different treatments. Morphological traits got better with increasing salinity with no adverse effect on cellulose. Salinity moderately affected the water absorption capacity of cellulose. All cellulose samples were devoid of gram-negative bacteria known by microbial test. This pioneering work underscores the plant's remarkable capacity not only to accomplish the circular economy by the valorization of wastewater obtained from various water purifiers for Juncus cultivation for cellulose production for diverse applications but also to generate income from wastewater.
Collapse
Affiliation(s)
- Krupali Dipakbhai Vyas
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneesha Singh
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Zhou L, Sun J, Xu X, Ma M, Li Y, Chen Q, Su H. Full quantitative resource utilization of raw mustard waste through integrating a comprehensive approach for producing hydrogen and soil amendments. Microb Cell Fact 2024; 23:27. [PMID: 38238808 PMCID: PMC10797975 DOI: 10.1186/s12934-023-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.
Collapse
Affiliation(s)
- Ling Zhou
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - JiaZhen Sun
- China railway academy Co., LTD, No, 118 Xiyuecheng Street, Jinniu District, Chengdu City, Sichuan Province, China
| | - XiaoJun Xu
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - MingXia Ma
- Sichuan Communication Surveying and Design Institute Co., LTD, 35 Taisheng North Road, Qingyang District, Chengdu City, Sichuan Province, China
| | - YongZhi Li
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China
| | - Qiao Chen
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| | - HaiFeng Su
- Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
| |
Collapse
|
5
|
Wan H, Chen L, Xiao J, Chen N, Yin H, Zhang L. Underactuated Humanoid Peeling Approach for Pickled Mustard Tuber Based on Metamorphic Constraints. Biomimetics (Basel) 2023; 8:566. [PMID: 38132505 PMCID: PMC10742137 DOI: 10.3390/biomimetics8080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Pickled mustard tuber (PMT), also known as Brassica juncea var. tumida, is a conical tuberous vegetable with a scaly upper part and a coarse fiber skin covering the lower part. Due to its highly distorted and complex heterogeneous fiber network structure, traditional manual labor is still used for peeling and removing fibers from pickled mustard tuber, as there is currently no effective, fully automated method or equipment available. In this study, we designed an underactuated humanoid pickled mustard tuber peeling robot based on variable configuration constraints that emulate the human "insert-clamp-tear" process via probabilistic statistical design. Based on actual pickled mustard tuber morphological cluster analysis and statistical features, we constructed three different types of pickled mustard tuber peeling tool spectral profiles and analyzed the modular mechanical properties of three different tool configurations to optimize the variable configuration constraint effect and improve the robot's end effector trajectory. Finally, an ADAMS virtual prototype model of the pickled mustard tuber peeling robot was established, and simulation analysis of the "insert-clamp-tear" process was performed based on the three pickled mustard tuber statistical classification selection. The results showed that the pickled mustard tuber peeling robot had a meat loss rate of no more than 15% for each corresponding category of pickled mustard tuber, a theoretical peeling rate of up to 15 pieces per minute, and an average residual rate of only about 2% for old fibers. Based on reasonable meat loss, the efficiency of peeling was greatly improved, which laid the theoretical foundation for fully automated pickled mustard tuber peeling.
Collapse
Affiliation(s)
- Haochuan Wan
- School of Robotics Engineering, Yangtze Normal University, Chongqing 408100, China; (H.W.); (J.X.); (L.Z.)
| | - Lei Chen
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiayu Xiao
- School of Robotics Engineering, Yangtze Normal University, Chongqing 408100, China; (H.W.); (J.X.); (L.Z.)
| | - Nana Chen
- School of Robotics Engineering, Yangtze Normal University, Chongqing 408100, China; (H.W.); (J.X.); (L.Z.)
| | - Hankun Yin
- School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| | - Lin Zhang
- School of Robotics Engineering, Yangtze Normal University, Chongqing 408100, China; (H.W.); (J.X.); (L.Z.)
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
6
|
Yin J, Yang J, Yu X, Chen T, He S. Enhanced poly(3-hydroxybutyrateco-3-hydroxyvalerate) production from high-concentration propionate by a novel halophile Halomonas sp. YJ01: Detoxification of the 2-methylcitrate cycle. BIORESOURCE TECHNOLOGY 2023; 388:129738. [PMID: 37714496 DOI: 10.1016/j.biortech.2023.129738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
As a carbon substrate, propionate can be used to synthesize poly(3-hydroxybutyrateco-3-hydroxyvalerate) [PHBV] biopolymer, but high concentrations can inhibit PHBV production. Therefore, novel PHBV producers that can utilize high propionate concentrations are needed. Here, a novel halophile, Halomonas sp. YJ01 was applied to PHBV production via a propionate-dependent pathway, and optimal culture growth conditions were determined. The maximum poly(3-hydroxybutyrate) [PHB] content and yield in the presence of glucose were 89.5 wt% and 5.7 g/L, respectively. This strain utilizes propionate and volatile fatty acids (VFAs) for PHBV accumulation. Multiple genes related to polyhydroxyalkanoate (PHA) synthesis were identified using whole-genome annotation. The PHBV yield and 3HV fraction obtained by strain YJ01 utilizing 15 g/L propionate were 0.86 g/L and 29 mol%, respectively, but in cultures with glucose-propionate, it decreased its copolymer dry weight. This indicates that propionyl-CoA was converted to pyruvate through the 2-methylcitrate cycle (2MCC), which reduced propionate detoxification for the strain.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jincan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqin Yu
- Zhejiang Best Energy and Environment Co., Ltd, Hangzhou 310000, China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shanying He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
7
|
Qu Y, Guan Q, Du Y, Shi W, Zhao M, Huang Z, Ruan W. Insight into the effect of rice-straw ash on enhancing the anaerobic digestion performance of high salinity organic wastewater. CHEMOSPHERE 2023; 340:139920. [PMID: 37611754 DOI: 10.1016/j.chemosphere.2023.139920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Anaerobic digestion is an economic method for treating high salinity organic wastewater (HSOW), but performance enhancement is needed because of the inhibitory effect of high salinity. In this study, rice-straw ash (RSA) was applied to alleviate the inhibitory effect during HSOW anaerobic digestion. The results showed that, when the NaCl content increased from 0% to 3.0%, the methane production decreased by 87.35%, and the TOC removal rate decreased to 34.12%. As a K+ and alkalinity source, RSA addition enhanced the anaerobic digestion performance, and the optimal dosage was 0.88 g/L. Under this dosage, the methane production increased by 221.60%, and TOC removal rate reached 66.42% at 3.0% salinity. The addition of RSA increased the proportion of living cells in the high salinity environment, and enhanced the activity of key enzymes and electron transfer efficiency in the anaerobic digestion process. The addition of RSA with a dosage of 0.88 g/L promoted the accumulation of acetoclastic methanogen Methanothrix. The abundance of substrate transporters, ion transporters and electron transfer related functional genes were enriched, which might be key for promoting HSOW anaerobic digestion performance. The results also showed that RSA addition played an important role in maintaining the stability of the anaerobic digestion system, and it could be a potential strategy for enhancing the anaerobic digestion performance under high salinity conditions.
Collapse
Affiliation(s)
- Yunhe Qu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuyue Guan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Du
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| |
Collapse
|
8
|
Performance and Bacterial Characteristics of Aerobic Granular Sludge in Treatment of Ultra-Hypersaline Mustard Tuber Wastewater. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Mustard tuber wastewater (MTW) is an ultra-hypersaline high-strength acid organic wastewater. Aerobic granular sludge (AGS) has been demonstrated to have high tolerance to high organic loading rate (OLR), high salinity, and broad pH ranges. However, most studies were conducted under single stress, and the performance of AGS under multiple stresses (high salinity, high OLR, and low pH) was still unclear. Herein, mature AGS was used to try to treat the real MTW at 9% salinity, pH of 4.1–6.7, and OLR of 1.8–7.2 kg COD/m3·d. The OLR was increased, and the results showed that the upper OLR boundary of AGS was 5.4 kg COD/m3·d (pH of 4.2) with relatively compact structure and high removal of TOC (~93.1%), NH4+-N (~88.2%), and TP (~50.6%). Under 7.2 kg COD/m3·d (pH of 4.1), most of the AGS was fragmented, primarily due to the multiple stresses. 16S rRNA sequencing indicated that Halomonas dominated the reactor during the whole process with the presence of unclassified-f-Flavobacteriaceae, Aequorivita, Paracoccus, Bradymonas, and Cryomorpha, which played key roles in the removal of TOC, nitrogen, and phosphorus. This study investigated the performance of AGS under multiple stresses, and also brought a new route for highly-efficient simultaneous nitrification–denitrifying phosphorus removal of real MTW.
Collapse
|