1
|
Newby G, Chaki P, Latham M, Marrenjo D, Ochomo E, Nimmo D, Thomsen E, Tatarsky A, Juma EO, Macdonald M. Larviciding for malaria control and elimination in Africa. Malar J 2025; 24:16. [PMID: 39815293 PMCID: PMC11734449 DOI: 10.1186/s12936-024-05236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Global progress toward malaria elimination and eradication goals has stagnated in recent years, with many African countries reporting increases in malaria morbidity and mortality. Insecticide-treated nets and indoor residual spraying are effective, but the emergence and increased intensity of insecticide resistance and the challenge of outdoor transmission are undermining their impact. New tools are needed to get back on track towards global targets. This Perspective explores the major challenges hindering wider-scale implementation of larviciding in Africa and identifies potential solutions and opportunities to overcome these barriers. LARVICIDING IN AFRICA OVERVIEW, CHALLENGES, AND SOLUTIONS: Larviciding is a valuable vector control tool with strong potential for regional scale-up. There is considerable evidence of its effectiveness, and the World Health Organization (WHO) recommends it as a supplemental intervention. However, malaria programmes hoping to implement larviciding face significant barriers, including (1) poor global technical, policy, and funding support; (2) fragmented implementation and experience; (3) high complexity of delivery and impact evaluation; and (4) limited access to the full range of WHO prequalified larvicide products. Strategic barriers related to global policy and donor hesitancy can be overcome through a coordinated demonstration of cost-effectiveness. Technological advancements and strengthened operational capacity have already overcome technical barriers related to larvicide delivery, targeting, coverage, and evaluation. Developing a Community of Practice platform for larviciding has strong potential to consolidate efforts, addressing the challenge of fragmented implementation and experience. Such a platform can serve as a resource center for African malaria programmes, collating and disseminating technical guidance, facilitating the exchange of best practices, and aiding malaria programmes and partners in designing and evaluating larviciding projects. CONCLUSION The global shift toward targeted and adaptive interventions enables the incorporation of larviciding into an expanded vector control toolbox. As more African countries implement larvicide programmes, establishing a regional Community of Practice platform for exchanging experiences and best practices is necessary to strengthen the evidence base for cost-effective implementation, advocate for support, and inform policy recommendations, thus supporting Africa's progress toward malaria elimination.
Collapse
Affiliation(s)
- Gretchen Newby
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, 550 16 St, San Francisco, CA, 94158, USA
| | - Prosper Chaki
- Pan-African Mosquito Control Association, Kenya Medical Research Institute, Mbagathi Road, PO Box 4445-00100, Nairobi, Kenya
- Ifakara Health Institute, 67M3+GM3, Kiko Ave, Dar Es Salaam, Tanzania
| | - Mark Latham
- Manatee County Mosquito Control District, 1420 28Th Ave E, Ellenton, FL, 34222, USA
| | - Dulcisária Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Eric Ochomo
- Center for Global Health Research, Kenya Medical Research Institute, PO Box 1578-40100, Kisumu, Kenya
- RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland
| | - Derric Nimmo
- RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland
- Liverpool School of Tropical Medicine, IVCC, Pembroke Place, Liverpool, L3 5QA, UK
| | - Edward Thomsen
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, 550 16 St, San Francisco, CA, 94158, USA.
- RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland.
| | - Allison Tatarsky
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, 550 16 St, San Francisco, CA, 94158, USA
| | - Elijah O Juma
- Pan-African Mosquito Control Association, Kenya Medical Research Institute, Mbagathi Road, PO Box 4445-00100, Nairobi, Kenya
- RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland
| | - Michael Macdonald
- RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland
| |
Collapse
|
2
|
Dambach P, Louis VR, Standley CJ, Montenegro-Quiñonez CA. Beyond top-down: community co-creation approaches for sustainable dengue vector control. Glob Health Action 2024; 17:2426348. [PMID: 39514564 PMCID: PMC11552243 DOI: 10.1080/16549716.2024.2426348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Dengue fever, a mosquito-borne viral illness transmitted by Aedes mosquitoes, continues to be a significant public health burden in tropical and subtropical regions. Traditional vector control methods, primarily reliant on insecticides and larvicides, face challenges because of emerging insecticide resistance and limited community engagement. This narrative review explores co-creation as a collaborative approach to dengue control, where communities actively participate in designing and implementing solutions. Through an examination of existing literature, we discuss the rationale for co-creation, the various methods employed, evidence for effectiveness, challenges, and other items. Findings from previous studies suggest that co-creation can empower communities by fostering a sense of ownership and responsibility for dengue control efforts. Using local knowledge and insights, co-creation approaches have also been shown to identify and address specific community needs and preferences, leading to more contextually relevant interventions. Additionally, co-creation initiatives have demonstrated success in promoting behavior change within communities, leading to increased uptakes of preventive measures such as proper waste management and use of personal protective measures. However, challenges such as building trust and collaboration, addressing power dynamics, and ensuring long-term sustainability remain critical factors that are essential to foster collaboration, empower communities, and develop sustainable strategies for dengue control in affected regions.
Collapse
Affiliation(s)
- Peter Dambach
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Valérie R. Louis
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Claire J. Standley
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
| | - Carlos Alberto Montenegro-Quiñonez
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Instituto de Investigaciones, Centro Universitario de Zacapa, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| |
Collapse
|
3
|
Tia JPB, Tchicaya ESF, Zahouli JZB, Ouattara AF, Vavassori L, Assamoi JB, Small G, Koudou BG. Combined use of long-lasting insecticidal nets and Bacillus thuringiensis israelensis larviciding, a promising integrated approach against malaria transmission in northern Côte d'Ivoire. Malar J 2024; 23:168. [PMID: 38812003 PMCID: PMC11137964 DOI: 10.1186/s12936-024-04953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.
Collapse
Affiliation(s)
- Jean-Philippe B Tia
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | - Emile S F Tchicaya
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Péléforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Julien Z B Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Allassane F Ouattara
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Laura Vavassori
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | | - Graham Small
- Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Benjamin G Koudou
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
4
|
Metchanun N, Borgemeister C, Amzati G, von Braun J, Nikolov M, Selvaraj P, Gerardin J. Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evol Appl 2022; 15:132-148. [PMID: 35126652 PMCID: PMC8792473 DOI: 10.1111/eva.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
Collapse
Affiliation(s)
| | | | - Gaston Amzati
- Université Evangélique en AfriqueBukavuDemocratic Republic of the Congo
| | | | | | | | - Jaline Gerardin
- Institute for Disease ModelingBellevueWashingtonUSA
- Department of Preventive Medicine and Institute for Global HealthNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
5
|
Runge M, Mapua S, Nambunga I, Smith TA, Chitnis N, Okumu F, Pothin E. Evaluation of different deployment strategies for larviciding to control malaria: a simulation study. Malar J 2021; 20:324. [PMID: 34315473 PMCID: PMC8314573 DOI: 10.1186/s12936-021-03854-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Larviciding against malaria vectors in Africa has been limited to indoor residual spraying and insecticide-treated nets, but is increasingly being considered by some countries as a complementary strategy. However, despite progress towards improved larvicides and new tools for mapping or treating mosquito-breeding sites, little is known about the optimal deployment strategies for larviciding in different transmission and seasonality settings. METHODS A malaria transmission model, OpenMalaria, was used to simulate varying larviciding strategies and their impact on host-seeking mosquito densities, entomological inoculation rate (EIR) and malaria prevalence. Variations in coverage, duration, frequency, and timing of larviciding were simulated for three transmission intensities and four transmission seasonality profiles. Malaria transmission was assumed to follow rainfall with a lag of one month. Theoretical sub-Saharan African settings with Anopheles gambiae as the dominant vector were chosen to explore impact. Relative reduction compared to no larviciding was predicted for each indicator during the simulated larviciding period. RESULTS Larviciding immediately reduced the predicted host-seeking mosquito densities and EIRs to a maximum that approached or exceeded the simulated coverage. Reduction in prevalence was delayed by approximately one month. The relative reduction in prevalence was up to four times higher at low than high transmission. Reducing larviciding frequency (i.e., from every 5 to 10 days) resulted in substantial loss in effectiveness (54, 45 and 53% loss of impact for host-seeking mosquito densities, EIR and prevalence, respectively). In seasonal settings the most effective timing of larviciding was during or at the beginning of the rainy season and least impactful during the dry season, assuming larviciding deployment for four months. CONCLUSION The results highlight the critical role of deployment strategies on the impact of larviciding. Overall, larviciding would be more effective in settings with low and seasonal transmission, and at the beginning and during the peak densities of the target species populations. For maximum impact, implementers should consider the practical ranges of coverage, duration, frequency, and timing of larviciding in their respective contexts. More operational data and improved calibration would enable models to become a practical tool to support malaria control programmes in developing larviciding strategies that account for the diversity of contexts.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Salum Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Ismail Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Clinton Health Access Initiative, Boston, USA
| |
Collapse
|
6
|
Dambach P, Bärnighausen T, Yadouleton A, Dambach M, Traoré I, Korir P, Ouedraogo S, Nikiema M, Sauerborn R, Becker N, Louis VR. Is biological larviciding against malaria a starting point for integrated multi-disease control? Observations from a cluster randomized trial in rural Burkina Faso. PLoS One 2021; 16:e0253597. [PMID: 34143831 PMCID: PMC8213177 DOI: 10.1371/journal.pone.0253597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/08/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To evaluate the impact of anti-malaria biological larviciding with Bacillus thuringiensis israelensis on non-primary target mosquito species in a rural African setting. METHODS A total of 127 villages were distributed in three study arms, each with different larviciding options in public spaces: i) no treatment, ii) full or iii) guided intervention. Geographically close villages were grouped in clusters to avoid contamination between treated and untreated villages. Adult mosquitoes were captured in light traps inside and outside houses during the rainy seasons of a baseline and an intervention year. After enumeration, a negative binomial regression was used to determine the reductions achieved in the different mosquito species through larviciding. RESULTS Malaria larviciding interventions showed only limited or no impact against Culex mosquitoes; by contrast, reductions of up to 34% were achieved against Aedes when all detected breeding sites were treated. Culex mosquitoes were captured in high abundance in semi-urban settings while more Aedes were found in rural villages. CONCLUSIONS Future malaria larviciding programs should consider expanding onto the breeding habitats of other disease vectors, such as Aedes and Culex and evaluate their potential impact. Since the major cost components of such interventions are labor and transport, other disease vectors could be targeted at little additional cost.
Collapse
Affiliation(s)
- Peter Dambach
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Till Bärnighausen
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Anges Yadouleton
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Martin Dambach
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Issouf Traoré
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Patricia Korir
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | | | - Rainer Sauerborn
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Speyer, Germany
| | - Valérie R. Louis
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Dambach P, Winkler V, Bärnighausen T, Traoré I, Ouedraogo S, Sié A, Sauerborn R, Becker N, Louis VR. Biological larviciding against malaria vector mosquitoes with Bacillus thuringiensis israelensis (Bti) - Long term observations and assessment of repeatability during an additional intervention year of a large-scale field trial in rural Burkina Faso. Glob Health Action 2021; 13:1829828. [PMID: 33028158 PMCID: PMC7580761 DOI: 10.1080/16549716.2020.1829828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The first line of malaria vector control to date mainly relies on the use of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). For integrated vector management, targeting the vector larvae with biological larvicides such as Bacillus thuringiensis israelensis (Bti) can be an effective additional mainstay. This study presents data from the second intervention year of a large-scale trial on biological larviciding with Bti that was carried out in 127 rural villages and a semi-urban town in Burkina Faso. Here we present the reductions in malaria mosquitoes that were achieved by continuing the initial interventions for an additional year, important to assess sustainability and repeatability of the results from the first intervention year. Larviciding was performed applying two different larviciding choices ((a) treatment of all environmental breeding sites, and (b) selective treatment of those that were most productive for Anopheles larvae indicated by remote sensing based risk maps). Adult Anopheles spp. mosquito abundance was reduced by 77.4% (full treatment) and 63.5% (guided treatment) compared to the baseline year. The results showed that malaria vector abundance can be dramatically reduced using biological larviciding and that this effect can be achieved and maintained over several consecutive transmission seasons.
Collapse
Affiliation(s)
- Peter Dambach
- Institute of Global Health, University Hospital Heidelberg , Heidelberg, Germany
| | - Volker Winkler
- Institute of Global Health, University Hospital Heidelberg , Heidelberg, Germany
| | - Till Bärnighausen
- Institute of Global Health, University Hospital Heidelberg , Heidelberg, Germany
| | - Issouf Traoré
- Centre de Recherche en Santé de Nouna , Nouna, Burkina Faso
| | | | - Ali Sié
- Centre de Recherche en Santé de Nouna , Nouna, Burkina Faso
| | - Rainer Sauerborn
- Institute of Global Health, University Hospital Heidelberg , Heidelberg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS) , Speyer, Germany
| | - Valérie R Louis
- Institute of Global Health, University Hospital Heidelberg , Heidelberg, Germany
| |
Collapse
|
8
|
Dambach P, Traoré I, Sawadogo H, Zabré P, Shukla S, Sauerborn R, Becker N, Phalkey R. Community acceptance of environmental larviciding against malaria with Bacillus thuringiensis israelensis in rural Burkina Faso - A knowledge, attitudes and practices study. Glob Health Action 2021; 14:1988279. [PMID: 34927578 PMCID: PMC8725727 DOI: 10.1080/16549716.2021.1988279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Malaria control is based on early treatment of cases and on vector control. The current measures for malaria vector control in Africa are mainly based on long-lasting insecticidal nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). While bed net use is widely distributed and its role is intensively researched, Bti-based larviciding is a relatively novel tool in Africa. In this study, we analyze the perception and acceptability of Bti-based larval source management under different larviciding scenarios that were performed in a health district in Burkina Faso. Objective To research people’s perception and acceptance regarding biological larviciding interventions against malaria in their communities. Methods A cross-sectional study was undertaken using a total of 634 administered questionnaires. Data were collected in a total of 36 rural villages and in seven town quarters of the semi-urban town of Nouna. Results Respondents had basic to good knowledge regarding malaria transmission and how to protect oneself against it. More than 90% reported sleeping under a bed net, while other measures such as mosquito coils and insecticides were only used by a minority. The majority of community members reported high perceived reductions in mosquito abundance and the number of malaria episodes. There was a high willingness to contribute financially to larviciding interventions among interviewees. Conclusions This study showed that biological larviciding interventions are welcomed by the population that they are regarded as an effective and safe means to reduce mosquito abundance and malaria transmission. A routine implementation would, despite low intervention costs, require community ownership and contribution.
Collapse
Affiliation(s)
- Peter Dambach
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Issouf Traoré
- Centre De Recherche En Santé De Nouna, Nouna, Burkina Faso.,Institut De Formations Initiale Et Continue, Université Thomas Sankara, Ouagadougou, Burkina Faso
| | | | - Pascal Zabré
- Centre De Recherche En Santé De Nouna, Nouna, Burkina Faso
| | - Sharvari Shukla
- Symbiosis Statistical Institute, Symbiosis International (Deemed University)
| | - Rainer Sauerborn
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Speyer, Germany.,Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Revati Phalkey
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany.,Epidemiology and Public Health Division, University of Nottingham, Nottingham, UK.,Climate Change and Health Group, Public Health England, Chilton, UK
| |
Collapse
|
9
|
Dambach P, Baernighausen T, Traoré I, Ouedraogo S, Sié A, Sauerborn R, Becker N, Louis VR. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar J 2019; 18:311. [PMID: 31521176 PMCID: PMC6744650 DOI: 10.1186/s12936-019-2951-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background Malaria remains one of the most important causes of morbidity and death in sub-Saharan Africa. Along with early diagnosis and treatment of malaria cases and intermittent preventive treatment in pregnancy (IPTp), vector control is an important tool in the reduction of new cases. Alongside the use of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), targeting the vector larvae with biological larvicides, such as Bacillus thuringiensis israelensis (Bti) is gaining importance as a means of reducing the number of mosquito larvae before they emerge to their adult stage. This study presents data corroborating the entomological impact of such an intervention in a rural African environment. Methods The study extended over 2 years and researched the impact of biological larviciding with Bti on malaria mosquitoes that were caught indoors and outdoors of houses using light traps. The achieved reductions in female Anopheles mosquitoes were calculated for two different larviciding choices using a regression model. Results In villages that received selective treatment of the most productive breeding sites, the number of female Anopheles spp. dropped by 61% (95% CI 54–66%) compared to the pre-intervention period. In villages in which all breeding sites were treated, the number of female Anopheles spp. was reduced by 70% (95% CI 64–74%) compared to the pre-intervention period. Conclusion It was shown that malaria vector abundance can be dramatically reduced through larviciding of breeding habitats and that, in many geographical settings, they are a viable addition to current malaria control measures.
Collapse
Affiliation(s)
- Peter Dambach
- Institute of Public Health, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Till Baernighausen
- Institute of Public Health, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Issouf Traoré
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | | | - Ali Sié
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Rainer Sauerborn
- Institute of Public Health, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), 67346, Speyer, Germany
| | - Valérie R Louis
- Institute of Public Health, University Hospital Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
A qualitative study of community perception and acceptance of biological larviciding for malaria mosquito control in rural Burkina Faso. BMC Public Health 2018; 18:399. [PMID: 29566754 PMCID: PMC5865284 DOI: 10.1186/s12889-018-5299-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/02/2022] Open
Abstract
Background Vector and malaria parasite’s rising resistance against pyrethroid-impregnated bed nets and antimalarial drugs highlight the need for additional control measures. Larviciding against malaria vectors is experiencing a renaissance with the availability of environmentally friendly and target species-specific larvicides. In this study, we analyse the perception and acceptability of spraying surface water collections with the biological larvicide Bacillus thuringiensis israelensis in a single health district in Burkina Faso. Methods A total of 12 focus group discussions and 12 key informant interviews were performed in 10 rural villages provided with coverage of various larvicide treatments (all breeding sites treated, the most productive breeding sites treated, and untreated control). Results Respondents’ knowledge about the major risk factors for malaria transmission was generally good. Most interviewees stated they performed personal protective measures against vector mosquitoes including the use of bed nets and sometimes mosquito coils and traditional repellents. The acceptance of larviciding in and around the villages was high and the majority of respondents reported a relief in mosquito nuisance and malarial episodes. There was high interest in the project and demand for future continuation. Conclusion This study showed that larviciding interventions received positive resonance from the population. People showed a willingness to be involved and financially support the program. The positive environment with high acceptance for larviciding programs would facilitate routine implementation. An essential factor for the future success of such programs would be inclusion in regional or national malaria control guidelines. Electronic supplementary material The online version of this article (10.1186/s12889-018-5299-7) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, Moonen B, Schapira A, Smith DL. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J 2017; 16:459. [PMID: 29132357 PMCID: PMC5683539 DOI: 10.1186/s12936-017-2106-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
There is a long history of considering the constituent components of malaria risk and the malaria transmission cycle via the use of mathematical models, yet strategic planning in endemic countries tends not to take full advantage of available disease intelligence to tailor interventions. National malaria programmes typically make operational decisions about where to implement vector control and surveillance activities based upon simple categorizations of annual parasite incidence. With technological advances, an enormous opportunity exists to better target specific malaria interventions to the places where they will have greatest impact by mapping and evaluating metrics related to a variety of risk components, each of which describes a different facet of the transmission cycle. Here, these components and their implications for operational decision-making are reviewed. For each component, related mappable malaria metrics are also described which may be measured and evaluated by malaria programmes seeking to better understand the determinants of malaria risk. Implementing tailored programmes based on knowledge of the heterogeneous distribution of the drivers of malaria transmission rather than only consideration of traditional metrics such as case incidence has the potential to result in substantial improvements in decision-making. As programmes improve their ability to prioritize their available tools to the places where evidence suggests they will be most effective, elimination aspirations may become increasingly feasible.
Collapse
Affiliation(s)
- Justin M Cohen
- Clinton Health Access Initiative, 383 Dorchester Ave., Suite 400, Boston, MA, 02127, USA.
| | - Arnaud Le Menach
- Clinton Health Access Initiative, 383 Dorchester Ave., Suite 400, Boston, MA, 02127, USA
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St (2300), New Orleans, LA, 70112, USA
| | - Peter W Gething
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK
| | - Philip A Eckhoff
- Institute for Disease Modeling, Building IV, 3150 139th Ave SE, Bellevue, WA, 98005, USA
| | - Bruno Moonen
- Bill & Melinda Gates Foundation, PO Box 23350, Seattle, WA, 98102, USA
| | | | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Ave., Suite 600, Seattle, WA, 98121, USA
| |
Collapse
|
12
|
Muema JM, Bargul JL, Njeru SN, Onyango JO, Imbahale SS. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasit Vectors 2017; 10:184. [PMID: 28412962 PMCID: PMC5392979 DOI: 10.1186/s13071-017-2122-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Malaria presents an overwhelming public health challenge, particularly in sub-Saharan Africa where vector favourable conditions and poverty prevail, potentiating the disease burden. Behavioural variability of malaria vectors poses a great challenge to existing vector control programmes with insecticide resistance already acquired to nearly all available chemical compounds. Thus, approaches incorporating plant-derived compounds to manipulate semiochemical-mediated behaviours through disruption of mosquito olfactory sensory system have considerably gained interests to interrupt malaria transmission cycle. The combination of push-pull methods and larval control have the potential to reduce malaria vector populations, thus minimising the risk of contracting malaria especially in resource-constrained communities where access to synthetic insecticides is a challenge. In this review, we have compiled information regarding the current status of knowledge on manipulation of larval ecology and chemical-mediated behaviour of adult mosquitoes with plant-derived compounds for controlling mosquito populations. Further, an update on the current advancements in technologies to improve longevity and efficiency of these compounds for field applications has been provided.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.,Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sospeter N Njeru
- Department of Medicine, Faculty of Health Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya.,Present Address: Fritz Lipmann Institute (FLI) - Leibniz Institute of Aging Research, D-07745, Jena, Germany
| | - Joab O Onyango
- Department of Chemical Science and Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Susan S Imbahale
- Department of Applied and Technical Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
13
|
Muema JM, Njeru SN, Colombier C, Marubu RM. Methanolic extract of Agerantum conyzoides exhibited toxicity and growth disruption activities against Anopheles gambiae sensu stricto and Anopheles arabiensis larvae. Altern Ther Health Med 2016; 16:475. [PMID: 27876055 PMCID: PMC5120420 DOI: 10.1186/s12906-016-1464-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022]
Abstract
Background Vector control remains the mainstay to effective malaria management. The negative implications following persistent application of synthetic insecticides geared towards regulation of mosquito populations have necessitated prospection for ecofriendly effective chemistries. Plant-derived compounds have the potential to control malaria-transmitting mosquito populations. Previously, Agerantum conyzoides extracts have demonstrated toxicity effects on disease-transmitting mosquitoes. However, their efficacy in controlling Afrotropical malaria vectors remains unclear. Herein, the toxicity and growth disruption activities of crude methanolic leaf extract of A. conyzoides on Anopheles gambiae sensu stricto and An. arabiensis larvae were assessed. Methods Late third (L3) instars of An. gambiae s.s and An. arabiensis larvae were challenged with increasing doses of crude methanolic extract of A. conyzoides. The larval mortality rates were recorded every 24 h and the LC50 values determined at their associated 95% confidence levels. ANOVA followed by Post-hoc Student-Newman-Keuls (SNK) test was used to compare results between treatment and control groups. Phytochemical profiling of the extract was performed using standard chemical procedures. Results Treatment of larvae with the methanolic extract depicted dose-dependent effects with highest mortality percentages of ≥ 69% observed when exposed with 250 ppm and 500 ppm for 48 h while growth disruption effects were induced by sublethal doses of between 50–100 ppm for both species. Relative to experimental controls, the extract significantly reduced larval survival in both mosquito species (ANOVA, F(8,126) = 43.16776, P < 0.001). The LC50 values of the extract against An. gambiae s.s ranged between 84.71–232.70 ppm (95% CI 81.17–239.20), while against An. arabiensis the values ranged between 133.46–406.35 ppm (95% CI 131.51–411.25). The development of the juvenile stages was arrested at pupal-larval intermediates and adult emergence. The presence of alkaloids, aglycone flavonoids, triterpenoids, tannins and coumarins can partly be associated with the observed effects. Conclusion The extract displayed considerable larvicidal activity and inhibited emergence of adult mosquitoes relative to experimental controls, a phenomenon probably associated with induced developmental hormone imbalance. Optimization of the bioactive compounds could open pathways into vector control programmes for improved mosquito control and reduced malaria transmission rates.
Collapse
|
14
|
Schorkopf DLP, Spanoudis CG, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining Attractants and Larvicides in Biodegradable Matrices for Sustainable Mosquito Vector Control. PLoS Negl Trop Dis 2016; 10:e0005043. [PMID: 27768698 PMCID: PMC5074459 DOI: 10.1371/journal.pntd.0005043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 01/27/2023] Open
Abstract
Background There is a global need for cost-effective and environmentally friendly tools for control of mosquitoes and mosquito-borne diseases. One potential way to achieve this is to combine already available tools to gain synergistic effects to reduce vector mosquito populations. Another possible way to improve mosquito control is to extend the active period of a given control agent, enabling less frequent applications and consequently, more efficient and longer lasting vector population suppression. Methodology/principal findings We investigated the potential of biodegradable wax emulsions to improve the performance of semiochemical attractants for gravid female culicine vectors of disease, as well as to achieve more effective control of their aquatic larval offspring. As an attractant for gravid females, we selected acetoxy hexadecanolide (AHD), the Culex oviposition pheromone. As toxicant for mosquito larvae, we chose the biological larvicides Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs). These attractant and larvicidal agents were incorporated, separately and in combination, into a biodegradable wax emulsion, a commercially available product called SPLAT (Specialized Pheromone & Lure Application Technology) and SPLATbac, which contains 8.33% Bti and 8.33% Bs. Wax emulsions were applied to water surfaces as buoyant pellets of 20 mg each. Dose-mortality analyses of Culex quinquefasciatus Say larvae demonstrated that a single 20 mg pellet of a 10−1 dilution of SPLATbac in a larval tray containing 1 L of water caused 100% mortality of neonate (1st instar) larvae for at least five weeks after application. Mortality of 3rd instar larvae remained equally high with SPLATbac dilutions down to 10−2 for over two weeks post application. Subsequently, AHD was added to SPLAT (emulsion only, without Bs or Bti) to attract gravid females (SPLATahd), or together with biological larvicides to attract ovipositing females and kill emerging larvae (SPLATbacAHD, 10−1 dilution) in both laboratory and semi-field settings. The formulations containing AHD, irrespective of presence of larvicides, were strongly preferred as an oviposition substrate by gravid female mosquitoes over controls for more than two weeks post application. Experiments conducted under semi-field settings (large screened greenhouse, emulating field conditions) confirmed the results obtained in the laboratory. The combination of attractant and larvicidal agents in a single formulation resulted in a substantial increase in larval mosquito mortality when compared to formulations containing the larvicide agents alone. Conclusions/significance Collectively, our data demonstrate the potential for the effective use of wax emulsions as slow release matrices for mosquito attractants and control agents. The results indicate that the combination of an oviposition attractant with larvicides could synergize the control of mosquito disease vectors, specifically Cx. quinquefasciatus, a nuisance pest and circumtropical vector of lymphatic filariasis and encephalitis. Traditionally, a key intervention in mosquito control is the use of insecticides against the adult stage. However, various factors limit the long-term use of these control methods, including the development of insecticide resistance, changes in mosquito biting behaviour, and concerns regarding potential negative impacts of insecticides on the environment. There is therefore a need for alternative management strategies, such as those that target aquatic life stages of mosquitoes. The objective of this study was to investigate the potential of biodegradable wax emulsions such as SPLAT for use in attracting gravid females and control of aquatic stages of culicine vectors. Culex mosquito oviposition pheromone (acetoxy hexadecanolide, AHD) was selected as an attractant, and Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs) were used as control agents. Buoyant 20 mg pellets, created by drying SPLAT dollops prior to application, were applied to water surfaces. Dose-mortality analyses of Cx. quinquefasciatus larvae demonstrated that one single pellet caused 100% mortality of first instar larvae for at least five weeks post application. Mortality of 3rd instar larvae remained equally high even at 10−2 dilutions for over two weeks post application. In addition, AHD was embedded in SPLAT to either attract gravid females (SPLATahd) or to first attract gravid females to oviposit and then to kill the resulting larval offspring (SPLATbacAHD, 10−1 dilution) in both laboratory and semi-field settings. The wax matrix containing AHD, with or without Bti and Bs, was strongly preferred as an oviposition substrate over controls for over two weeks post application. Both laboratory and semi-field experiments showed a marked increase in larval mortality effects when a semiochemical attractant and larvicides were combined, compared to matrices containing larvicides alone. These findings indicate the potential for using wax emulsions such as SPLAT as a slow release matrix for mosquito attractants and control agents; and that the combination could synergize the control of Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Dirk Louis P. Schorkopf
- Swedish University of Agricultural Sciences, Unit of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
- * E-mail:
| | - Christos G. Spanoudis
- Swedish University of Agricultural Sciences, Unit of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
- Aristotle University of Thessaloniki, Faculty of Agriculture, Laboratory of Applied Zoology and Parasitology, Thessaloniki, Greece
| | | | - Agenor Mafra-Neto
- ISCA Technologies Inc., Riverside, California, United States of America
| | - Rickard Ignell
- Swedish University of Agricultural Sciences, Unit of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
| | - Teun Dekker
- Swedish University of Agricultural Sciences, Unit of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
| |
Collapse
|
15
|
Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, Lindtjørn B, Overgaard HJ. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors 2016; 9:527. [PMID: 27716416 PMCID: PMC5045578 DOI: 10.1186/s13071-016-1813-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the key malaria vector control interventions in Ethiopia. The success of these interventions rely on their efficacy to repel or kill indoor feeding and resting mosquitoes. This study was undertaken to monitor human-biting patterns of Anopheles species in south-central Ethiopia. METHODS Human-biting patterns of anophelines were monitored for 40 nights in three houses using human landing catches (HLC) both indoors and outdoors between July and November 2014, in Edo Kontola village, south-central Ethiopia. This time coincides with the major malaria transmission season in Ethiopia, which is usually between September and November. Adult mosquitoes were collected from 19:00 to 06:00 h and identified to species. Comparisons of HLC data were done using incidence rate ratio (IRR) calculated by negative binomial regression. The nocturnal biting activities of each Anopheles species was expressed as mean number of mosquitoes landing per person per hour. To assess malaria infections in Anopheles mosquitoes the presence of Plasmodium falciparum and P. vivax circumsporozoite proteins (CSP) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Altogether 3,408 adult female anophelines were collected, 2,610 (76.6 %) outdoors and 798 (23.4 %) indoors. Anopheles zeimanni was the predominant species (66.5 %) followed by An. arabiensis (24.8 %), An. pharoensis (6.8 %) and An. funestus (s.l.) (1.8 %). The overall mean anopheline density was 3.3 times higher outdoors than indoors (65.3 vs 19.9/person/night, IRR: 3.3, 95 % CI: 1.1-5.1, P = 0.001). The mean density of An. zeimanni, An. pharoensis and An. funestus (s.l.) collected outdoors was significantly higher than indoors for each species (P < 0.05). However, the mean An. arabiensis density outdoors was similar to that indoors (11.8 vs 9.4/person/night, IRR: 1.3, 95 % CI: 0.8-1.9, P = 0.335). The mean hourly human-biting density of An. arabiensis was greater outdoors than indoors and peaked between 21:00 and 22:00 h. However, An. arabiensis parous population showed high indoor man biting activities during bedtimes (22:00 to 05:00 h) when the local people were indoor and potentially protected by IRS and LLINs. All mosquito samples tested for CSP antigen were found negative to malaria parasites. CONCLUSIONS Results show much greater mosquito human-biting activities occurring outdoors than indoors and during early parts of the night, implying higher outdoor malaria transmission potential in the area. However, high bedtime (22:00 to 05:00 h) indoor biting activities of parous An. arabiensis suggest high potential intervention impact of IRS and LLINs on indoor malaria transmission.
Collapse
Affiliation(s)
- Oljira Kenea
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, Wollega University, Nekemte, Ethiopia
| | - Meshesha Balkew
- Akililu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Habte Tekie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Gebre-Michael
- Akililu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wakgari Deressa
- Department of Preventive Medicine, School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eskindir Loha
- School of Public and Environmental Health, Hawassa University, Hawassa, Ethiopia
| | - Bernt Lindtjørn
- Centre for International Health, University of Bergen, Bergen, Norway
| | - Hans J. Overgaard
- Norwegian University of Life Sciences, Ås, Norway
- Institut de Recherche pour le Développement (IRD), Maladies InfectieusesetVecteurs, Ecologie, Génétique, Evolution etContrôle (MIVEGEC), Montpellier, France
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Dambach P, Traoré I, Kaiser A, Sié A, Sauerborn R, Becker N. Challenges of implementing a large scale larviciding campaign against malaria in rural Burkina Faso - lessons learned and recommendations derived from the EMIRA project. BMC Public Health 2016; 16:1023. [PMID: 27686125 PMCID: PMC5041282 DOI: 10.1186/s12889-016-3587-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent malaria control and elimination attempts show remarkable success in several parts of sub-Saharan Africa. Vector control via larval source management represents a new and to date underrepresented approach in low income countries to further reduce malaria transmission. Although the positive impact of such campaigns on malaria incidence has been researched, there is a lack of data on which prerequisites are needed for implementing such programs on a routine basis on large scale. Our objectives are to point out important steps in implementing an anti-malaria larviciding campaign in a resource and infrastructure restraint setting and share the lessons learned from our experience during a three-year intervention study in rural Burkina Faso. METHODS We describe the approaches we followed and the challenges that have been encountered during the EMIRA project, a three-year study on the impact of environmental larviciding on vector ecology and human health. An inventory of all performed work packages and associated problems and peculiarities was assembled. RESULTS Key to the successful implementation of the larviciding program within a health district was the support and infrastructure from the local research center run by the government. This included availability of trained scientific personnel for local project management, data collection and analysis by medical personnel, entomologists and demographers and teams of fieldworkers for the larviciding intervention. A detailed a priori assessment of the environment and vector breeding site ecology was essential to calculate personnel requirements and the need for larvicide and application apparel. In our case of a three-year project, solid funding for the whole duration was an important issue, which restricted the number of possible donors. We found the acquisition of qualified field personnel in fair numbers not to be always easy and training in application techniques and basic entomologic knowledge required several weeks of theoretical and practical formation. A further crucial point was to establish an effective quality control system that ensured the timely verification of larviciding success and facilitated in time data handling. While the experiences of running a larviciding campaign may vary globally, the experiences gained and the methods used in the Nouna health district may be employed in similar settings. CONCLUSIONS Our observations highlight important components and strategies that should be taken into account when planning and running a similar larviciding program against malaria in a resource limited setting. A strong local partnership, meticulous planning with the possibility of ad-hoc adaption of project components and a reliable source of funding turned out to be crucial factors to successfully accomplish such a project.
Collapse
Affiliation(s)
- Peter Dambach
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany.
| | - Issouf Traoré
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Achim Kaiser
- German Mosquito Control Association (KABS), Speyer, Germany
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Rainer Sauerborn
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Speyer, Germany.,Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Dambach P, Schleicher M, Stahl HC, Traoré I, Becker N, Kaiser A, Sié A, Sauerborn R. Routine implementation costs of larviciding with Bacillus thuringiensis israelensis against malaria vectors in a district in rural Burkina Faso. Malar J 2016; 15:380. [PMID: 27449023 PMCID: PMC4957841 DOI: 10.1186/s12936-016-1438-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022] Open
Abstract
Background The key tools in malaria control are early diagnosis and treatment of cases as well as vector control. Current strategies for malaria vector control in sub-Saharan Africa are largely based on long-lasting insecticide-treated nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). An additional tool in the fight against malaria vectors, larval source management (LSM), has not been used in sub-Saharan Africa on a wider scale since the abandonment of environmental spraying of DDT. Increasing concerns about limitations of LLINs and IRS and encouraging results from large larvicide-based LSM trials make a strong case for using biological larviciding as a complementary tool to existing control measures. Arguments that are often quoted against such a combined approach are the alleged high implementation costs of LSM. This study makes the first step to test this argument. The implementation costs of larval source management based on Bacillus thuringiensis israelensis (Bti) (strain AM65-52) spraying under different implementation scenarios were analysed in a rural health district in Burkina Faso. Methods The analysis draws on detailed cost data gathered during a large-scale LSM intervention between 2013 and 2015. All 127 villages in the study setup were assigned to two treatment arms and one control group. Treatment either implied exhaustive spraying of all available water collections or targeted spraying of the 50 % most productive larval sources via remote-sensing derived and entomologically validated risk maps. Based on the cost reports from both intervention arms, the per capita programme costs were calculated under the assumption of covering the whole district with either intervention scenario. Cost calculations have been generalized by providing an adaptable cost formula. In addition, this study assesses the sensitivity of per capita programme costs with respect to changes in the underlying cost components. Results The average annual per capita costs of exhaustive larviciding with Bti during the main malaria transmission period (June–October) in the Nouna health district were calculated to be US$ 1.05. When targeted spraying of the 50 % most productive larval sources is used instead, average annual per capita costs decrease by 27 % to US$ 0.77. Additionally, a high sensitivity of per capita programme costs against changes in total surface of potential larval sources and the number of spraying repetitions was found. Discussion The per capita costs for larval source management interventions with Bti are roughly a third of the annual per capita expenditures for anti-malarial drugs and those for LLINs in Burkina Faso which are US$ 3.80 and 3.00, respectively. The average LSM costs compare to those of IRS and LLINs for sub-Saharan Africa. The authors argue that in such a setting LSM based on Bti spraying is within the range of affordable anti-malarial strategies and, consequently, should deserve more attention in practice. Future research includes a cost-benefit calculation, based on entomological and epidemiological data collected during the research project. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1438-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Dambach
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany.
| | | | | | - Issouf Traoré
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Norbert Becker
- German Mosquito Control Association (KABS), Speyer, Germany.,Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Achim Kaiser
- German Mosquito Control Association (KABS), Speyer, Germany
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Rainer Sauerborn
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|