1
|
Baroom HM, Alkenani NA, Al-Johny BO, Almohimeed AA, Mohammed MS, Alshehri LA, Althobaiti SS, Omar RI, Alshaeri MA, Al-Mmaqar SM. Molecular detection of Coxiella burnetii infection (Q fever) in livestock in Makkah Province, Saudi Arabia. Z NATURFORSCH C 2024:znc-2024-0126. [PMID: 39438143 DOI: 10.1515/znc-2024-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The study aims to investigate the prevalence of Q fever in livestock and ticks in Makkah Province, Saudi Arabia, by molecular methods. Using DNA obtained from (40) blood samples, (60) vaginal swabs and ticks (120) samples. Real-time PCR was used to detect the IS1111 insertion sequence of Coxiella burnetii in aborted animals. Among 40 blood samples only one sample of the camel was found to be infected with an overall prevalence of 2.5 %. The highest prevalence (10 %) was recorded in AL-Laith in one camel blood sample out of 10 samples examined. Of 60 vaginal swabs examined for C. burnetii DNA, four samples were found to be infected with an overall prevalence of 6.6 %. The highest prevalence (10 %) was recorded in Makkah in two camel vaginal swabs out of 20 samples, followed by Jeddah and AL-Laith with a prevalence of (5.6 %) by detection of one sample positive out of 18 samples on each of them, while vaginal swabs from AL-Kamil were negative. Three types of ticks were identified Hyalomma dromedarii, Hyalomma anatolicum, and Hyalomma excavatum. H. dromedarii tick is the most common in aborted camels with a prevalence (6.7 %) in Makkah followed by Jeddah (5 %). The findings of this study revealed that C. burnetii infection is prevalent in agricultural animals especially camels and ticks maintained at livestock farms in Makkah Province. However, these animals and ticks may pass on C. burnetii infections to nearby people and other animals in the study area.
Collapse
Affiliation(s)
- Hassan M Baroom
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Department of Microbiology, Faculty of Science Um Alqura University, Makkah, Saudi Arabia
| | - Naser A Alkenani
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Faculty of Sciences, Environmental Protection and Sustainability Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam O Al-Johny
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Faculty of Sciences, Environmental Protection and Sustainability Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adi A Almohimeed
- Department of Microbiology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Mohammed S Mohammed
- Department of Parasitology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Layla A Alshehri
- Department of Parasitology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Shaker S Althobaiti
- Department of Molecular Biology, Jeddah Islamic Port Veterinary Diagnostic Laboratory, Ministry of Agriculture, Jeddah, Saudi Arabia
| | - Raga I Omar
- Department of Science and Technology, University College of Nairiyah, Hafr Al-Batin University, Nairiyah, 31991, Saudi Arabia
| | - Majed A Alshaeri
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Faculty of Sciences, Environmental Protection and Sustainability Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh M Al-Mmaqar
- Department of Biological Sciences, Faculty of Science, 37848 King Abdulaziz University , P.O. Box: 80203, Jeddah, 21589, Saudi Arabia
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen
| |
Collapse
|
2
|
Kamau MW, Witte C, Goosen W, Mutinda M, Villinger J, Getange D, Khogali R, von Fricken ME, Fèvre EM, Zimmerman D, Linton YM, Miller M. Comparison of test performance of a conventional PCR and two field-friendly tests to detect Coxiella burnetii DNA in ticks using Bayesian latent class analysis. Front Vet Sci 2024; 11:1396714. [PMID: 38962707 PMCID: PMC11220323 DOI: 10.3389/fvets.2024.1396714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Coxiella burnetii (C. burnetii)-infected livestock and wildlife have been epidemiologically linked to human Q fever outbreaks. Despite this growing zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and studies to understand their epidemiologic role are needed. In C. burnetii-endemic areas, ticks have been reported to harbor and spread C. burnetii and may serve as indicators of risk of infection in wild animal habitats. Therefore, the aim of this study was to compare molecular techniques for detecting C. burnetii DNA in ticks. Methods In total, 169 ticks from wild animals and cattle in wildlife conservancies in northern Kenya were screened for C. burnetii DNA using a conventional PCR (cPCR) and two field-friendly techniques: Biomeme's C. burnetii qPCR Go-strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) analysis assay. Results were evaluated, in the absence of a gold standard test, using Bayesian latent class analysis (BLCA) to characterize the proportion of C. burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three tests. Results The final BLCA model included main effects and estimated that PCR-HRM had the highest Se (86%; 95% credible interval: 56-99%), followed by the Biomeme (Se = 57%; 95% credible interval: 34-90%), with the estimated Se of the cPCR being the lowest (24%, 95% credible interval: 10-47%). Specificity estimates for all three assays ranged from 94 to 98%. Based on the model, an estimated 16% of ticks had C. burnetii DNA present. Discussion These results reflect the endemicity of C. burnetii in northern Kenya and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. Further studies using ticks and wild animal samples will enhance understanding of the epidemiological role of ticks in Q fever.
Collapse
Affiliation(s)
- Maureen W. Kamau
- Mpala Research Centre, Nanyuki, Kenya
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- Global Health Program, Smithsonian National Zoo Conservation Biology Institute, Washington, DC, United States
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- The Center for Wildlife Studies, South Freeport, ME, United States
| | - Wynand Goosen
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Rua Khogali
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Michael E. von Fricken
- College of Public Health and Health Professionals, Department of Environmental and Global Health University of Florida, Gainesville, FL, United States
| | - Eric Maurice Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dawn Zimmerman
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU) Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Celina SS, Cerný J. Coxiella burnetii in ticks, livestock, pets and wildlife: A mini-review. Front Vet Sci 2022; 9:1068129. [PMID: 36439350 PMCID: PMC9691889 DOI: 10.3389/fvets.2022.1068129] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 07/20/2023] Open
Abstract
Coxiella burnetii is a zoonotic bacterium with an obligatory intracellular lifestyle and has a worldwide distribution. Coxiella burnetii is the causative agent of Q fever in humans and coxiellosis in animals. Since its discovery in 1935, it has been shown to infect a wide range of animal species including mammals, birds, reptiles, and arthropods. Coxiella burnetii infection is of public and veterinary health and economic concern due to its potential for rapid spread and highly infectious nature. Livestock are the primary source of C. burnetii infection in most Q fever outbreaks which occurs mainly through inhalation of contaminated particles. Aside from livestock, many cases of Q fever linked to exposure to wildlife. Changes in the dynamics of human-wildlife interactions may lead to an increased potential risk of interspecies transmission and contribute to the emergence/re-emergence of Q fever. Although C. burnetii transmission is mainly airborne, ticks may act as vectors and play an important role in the natural cycle of transmission of coxiellosis among wild vertebrates and livestock. In this review, we aim to compile available information on vectors, domestic, and wild hosts of C. burnetii, and to highlight their potential role as bacterial reservoirs in the transmission of C. burnetii.
Collapse
|
4
|
Hou KW, Wiethoelter AK, Stevenson MA, Soares Magalhaes RJ, Lignereux L, Caraguel C, Stenos J, Vincent G, Aleri JW, Firestone SM. A cross-sectional survey of risk factors for the presence of Coxiella burnetii in Australian commercial dairy goat farms. Aust Vet J 2022; 100:296-305. [PMID: 35582949 PMCID: PMC9543512 DOI: 10.1111/avj.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/22/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
The largest Australian farm‐based outbreak of Q fever originated from a dairy goat herd. We surveyed commercial dairy goat farms across Australia by testing bulk tank milk (BTM) samples using a commercial indirect enzyme‐linked immunosorbent assay and two quantitative polymerase chain reactions (PCRs). Of the 66 commercial dairy goat herds on record, managers from 61 herds were contacted and 49 provided BTM samples. Five of the surveyed herds were positive on at least one of the diagnostic tests, thus herd‐level apparent prevalence was 10% (95% confidence interval [CI] 4 to 22). True prevalence was estimated to be 3% (95% credible interval: 0 to 18). Herd managers completed a questionnaire on herd management, biosecurity and hygiene practices and risk factors were investigated using multivariable logistic regression. Herds with >900 milking does (the upper quartile) were more likely to be Coxiella burnetii positive (odds ratio = 6.75; 95% CI 1.65 to 27.7) compared with farms with ≤900 milking does. The odds of BTM positivity increased by a factor of 2.53 (95% CI 1.51 to 4.22) for each order of magnitude increase in the number of goats per acre. C. burnetii was not detected in samples from the majority of the Australian dairy goat herds suggesting there is an opportunity to protect the industry and contain this disease with strengthened biosecurity practices. Intensification appeared associated with an increased risk of positivity. Further investigation is required to discriminate the practices associated with an increased risk of introduction to disease‐free herds, from practices associated with maintenance of C. burnetii infection in infected dairy goat herds.
Collapse
Affiliation(s)
- K W Hou
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - A K Wiethoelter
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - M A Stevenson
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - R J Soares Magalhaes
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - L Lignereux
- School of Animal & Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - C Caraguel
- School of Animal & Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - J Stenos
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, Victoria, 3220, Australia
| | - G Vincent
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, Victoria, 3220, Australia
| | - J W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Centre for Animal Production and Health, Future Foods Institute, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - S M Firestone
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
5
|
Patra G, Ghosh S, Polley S, Borthakur SK, Choudhary OP, Arya RS. Molecular detection and genetic characterization of Coxiella-like endosymbionts in dogs and ticks infesting dogs in Northeast India. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:549-566. [PMID: 35445372 DOI: 10.1007/s10493-022-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
An epidemiological study was performed to determine the role of dogs and ticks infesting dogs in the transmission of Q fever in humans and animals from April 2019 to March 2020 in the northeastern hill states of India. In total, 245 pet and stray dogs irrespective of age or sex were sampled, without specific inclusion or exclusion criteria. In total, 478 ticks belonging to three species were detected, namely Rhipicephalus sanguineus, Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum anatolicum. The DNA extracted from blood and tick samples was assayed for molecular characterization of Coxiella burnetii targeting the 16S rRNA and superoxide dismutase (SOD) genes. Amplified PCR products were purified, cloned and custom sequenced. PCR assay showed 3.3% (8/245) of the dogs were positive for Coxiella-like bacteria. Coxiella-like bacterial DNA was detected in adult fully engorged females of R. sanguineus (7.7%, 13/168), R. (B.) microplus (3.3%, 4/123) and H. anatolicum (1.9%, 1/54). Coxiella-like bacterial DNA lacked in adult male or nymphal stage. The infection rate did not vary significantly between seasons, nor according to sex or age of the host. Six nucleotide sequences of 16S rRNA and SOD genes are discussed.
Collapse
Affiliation(s)
- Gautam Patra
- Department of Veterinary Parasitology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), 796015, Selesih, Aizawl, Mizoram, India.
| | - Subhamoy Ghosh
- Department of Veterinary Parasitology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), 796015, Selesih, Aizawl, Mizoram, India
| | - Shamik Polley
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Sonjoy Kumar Borthakur
- Department of Veterinary Parasitology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), 796015, Selesih, Aizawl, Mizoram, India
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | - Rahul Singh Arya
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| |
Collapse
|
6
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Cao R, Ren Q, Luo J, Tian Z, Liu W, Zhao B, Li J, Diao P, Tan Y, Qiu X, Zhang G, Wang Q, Guan G, Luo J, Yin H, Liu G. Analysis of Microorganism Diversity in Haemaphysalis longicornis From Shaanxi, China, Based on Metagenomic Sequencing. Front Genet 2021; 12:723773. [PMID: 34567077 PMCID: PMC8458759 DOI: 10.3389/fgene.2021.723773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Ticks are dangerous ectoparasites of humans and animals, as they are important disease vectors and serve as hosts for various microorganisms (including a variety of pathogenic microorganisms). Diverse microbial populations coexist within the tick body. Metagenomic next-generation sequencing (mNGS) has been suggested to be useful for rapidly and accurately obtaining microorganism abundance and diversity data. In this study, we performed mNGS to analyze the microbial diversity of Haemaphysalis longicornis from Baoji, Shaanxi, China, with the Illumina HiSeq platform. We identified 189 microbial genera (and 284 species) from ticks in the region; the identified taxa included Anaplasma spp., Rickettsia spp., Ehrlichia spp., and other important tick-borne pathogens at the genus level as well as symbiotic microorganisms such as Wolbachia spp., and Candidatus Entotheonella. The results of this study provide insights into possible tick-borne diseases and reveal new tick-borne pathogens in this region. Additionally, valuable information for the biological control of ticks is provided. In conclusion, this study provides reference data for guiding the development of prevention and control strategies targeting ticks and tick-borne diseases in the region, which can improve the effectiveness of tick and tick-borne disease control.
Collapse
Affiliation(s)
- Runlai Cao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo Zhao
- Gansu Agriculture Technology College, Lanzhou, China
| | - Jing Li
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, China
| | - Peiwen Diao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yangchun Tan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaofei Qiu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gaofeng Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qilin Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
SEROLOGICAL EVIDENCE OF COXIELLA BURNETII INFECTION IN THE WHITE RHINOCEROS ( CERATOTHERIUM SIMUM) IN SOUTH AFRICA. J Zoo Wildl Med 2021; 52:573-579. [PMID: 34130400 DOI: 10.1638/2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Coxiellosis, or Query (Q) fever, a disease caused by the intracellular bacteria Coxiella burnetii, was recently described in a managed breeding herd of white rhinoceros (Ceratotherium simum) in the southeastern United States. Clinical disease often results in abortion and could represent a conservation challenge for this species. In addition to the reproductive and herd management consequences, coxiellosis is also a zoonotic disease. Infection or clinical disease in any free-ranging rhinoceros species in a national park setting has not been previously described. In this study, evidence of prior infection was measured by immunofluorescent antibody titers in 89 serum samples collected from white rhinoceros within private reserves and a national park in South Africa. Total seropositivity was 48/89 (53.9% [95% CI, 43.6-63.9%]). Animals on private reserves had a seropositivity of 21/51 (41.1% [95% CI, 27.1-55.2%]), and national park rhinoceros had a higher rate of seropositivity at 71.0% [95% CI, 55.9-86.2%] (27/38; P= 0.004). Adults had a higher seropositivity compared with subadults (P= 0.03). There was no difference in seropositivity between sexes (P > 0.05). Results demonstrate that South African white rhinoceros populations are exposed to Coxiella, which could result in underrecognized reproductive consequences. Further studies should investigate potential implications for public health and conservation management of this species.
Collapse
|
9
|
Frangoulidis D, Kahlhofer C, Said AS, Osman AY, Chitimia-Dobler L, Shuaib YA. High Prevalence and New Genotype of Coxiella burnetii in Ticks Infesting Camels in Somalia. Pathogens 2021; 10:741. [PMID: 34204648 PMCID: PMC8231198 DOI: 10.3390/pathogens10060741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Coxiella burnetii is the causative agent of Q fever. It can infect animals, humans, and birds, as well as ticks, and it has a worldwide geographical distribution. To better understand the epidemiology of C. burnetii in Somalia, ticks infesting camels were collected from five different regions, including Bari, Nugaal, Mudug, Sool, and Sanaag, between January and March 2018. Collected ticks were tested for C. burnetii and Coxiella-like endosymbiont DNA by using IS1111, icd, and Com1-target PCR assays. Moreover, sequencing of the 16S-rRNA was conducted. Molecular characterization and typing were done by adaA-gene analysis and plasmid-type identification. Further typing was carried out by 14-marker Multi-Locus Variable-Number Tandem Repeats (MLVA/VNTR) analysis. The investigated ticks (n = 237) were identified as Hyalomma spp. (n = 227, 95.8%), Amblyomma spp. (n = 8, 3.4%), and Ripicephalus spp. (n = 2, 0.8%), and 59.1% (140/237) of them were positive for Coxiella spp. While Sanger sequencing and plasmid-type identification revealed a C. burnetii that harbours the QpRS-plasmid, MLVA/VNTR genotyping showed a new genotype which was initially named D21. In conclusion, this is the first report of C. burnetii in ticks in Somalia. The findings denote the possibility that C. burnetii is endemic in Somalia. Further epidemiological studies investigating samples from humans, animals, and ticks within the context of "One Health" are warranted.
Collapse
Affiliation(s)
- Dimitrios Frangoulidis
- Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information, Dachauer Str. 128, 80637 Munich, Germany;
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany;
| | - Claudia Kahlhofer
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany;
| | - Ahmed Shire Said
- College of Veterinary Medicine, East Africa University, Bosaso P.O. Box 111, Somalia;
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK;
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany;
- Department of Parasitology, Institute of Zoology, University of Hohenheim, Emil Wolff-Strasse 34, 70599 Stuttgart, Germany
| | - Yassir Adam Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204 Hilat Kuku, Khartoum North 13321, Sudan
| |
Collapse
|
10
|
Chisu V, Mura L, Foxi C, Masala G. Coxiellaceae in Ticks from Human, Domestic and Wild Hosts from Sardinia, Italy: High Diversity of Coxiella-like Endosymbionts. Acta Parasitol 2021; 66:654-663. [PMID: 33492605 DOI: 10.1007/s11686-020-00324-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Coxiella burnetii is known for its potential as veterinary and human bacterial pathogen. The bacteria have been described in ticks, but their role in transmission of Q fever in humans is considered low. Coxiella endosymbionts closely related to C. burnetii have been also isolated from an extensive range of tick species and evidence is growing that these endosymbionts could be linked to human bacteremia. The aim of this study was to get new information on the presence of Coxiella species in ticks infesting wild and domestic hosts in Sardinia, Italy. METHODS Here, 138 ticks collected from the study area were analyzed for the presence of C. burnetii and Coxiella-like bacteria by polymerase chain reaction (PCR), sequencing and philogenetic analyses using a set of primers targeting the 16S rRNA gene. RESULTS DNA of Coxiella species was detected in 69% of the total ticks examined. Based on phylogenetic analysis, the 16S rRNA Coxiella genotypes identified in this study grouped in strongly supported monophyletic clades with identified reference sequences of CLEs detected from Rhipicephalus, Dermacentor, Haemaphysalis and Ornithodoros species and with Coxiella burnetii strains isolated worldwide. CONCLUSION This study reports the molecular detection of a high diversity of Coxiella-like bacteria in Sardinian ticks and confirms also the presence of C. burnetii in tick species previously identified in the island. The role that Coxiella-like endosymbionts play in Sardinian ticks and in their vertebrate hosts needs to be explored further.
Collapse
|
11
|
Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited-A Systematic Review. Front Vet Sci 2021; 8:655715. [PMID: 33981744 PMCID: PMC8109271 DOI: 10.3389/fvets.2021.655715] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.
Collapse
Affiliation(s)
- Sophia Körner
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| | - Gustavo R. Makert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
12
|
Evaluation using latent class models of the diagnostic performances of three ELISA tests commercialized for the serological diagnosis of Coxiella burnetii infection in domestic ruminants. Vet Res 2021; 52:56. [PMID: 33853678 PMCID: PMC8048088 DOI: 10.1186/s13567-021-00926-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
ELISA methods are the diagnostic tools recommended for the serological diagnosis of Coxiella burnetii infection in ruminants but their respective diagnostic performances are difficult to assess because of the absence of a gold standard. This study focused on three commercial ELISA tests with the following objectives (1) assess their sensitivity and specificity in sheep, goats and cattle, (2) assess the between- and within-herd seroprevalence distribution in these species, accounting for diagnostic errors, and (3) estimate optimal sample sizes considering sensitivity and specificity at herd level. We comparatively tested 1413 cattle, 1474 goat and 1432 sheep serum samples collected in France. We analyzed the cross-classified test results with a hierarchical zero-inflated beta-binomial latent class model considering each herd as a population and conditional dependence as a fixed effect. Potential biases and coverage probabilities of the model were assessed by simulation. Conditional dependence for truly seropositive animals was high in all species for two of the three ELISA methods. Specificity estimates were high, ranging from 94.8% [92.1; 97.8] to 99.2% [98.5; 99.7], whereas sensitivity estimates were generally low, ranging from 39.3 [30.7; 47.0] to 90.5% [83.3; 93.8]. Between- and within-herd seroprevalence estimates varied greatly among geographic areas and herds. Overall, goats showed higher within-herd seroprevalence levels than sheep and cattle. The optimal sample size maximizing both herd sensitivity and herd specificity varied from 3 to at least 20 animals depending on the test and ruminant species. This study provides better interpretation of three widely used commercial ELISA tests and will make it possible to optimize their implementation in future studies. The methodology developed may likewise be applied to other human or animal diseases.
Collapse
|
13
|
Buysse M, Duhayon M, Cantet F, Bonazzi M, Duron O. Vector competence of the African argasid tick Ornithodoros moubata for the Q fever agent Coxiella burnetii. PLoS Negl Trop Dis 2021; 15:e0009008. [PMID: 33406079 PMCID: PMC7815103 DOI: 10.1371/journal.pntd.0009008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/19/2021] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Q fever is a widespread zoonotic disease caused by the intracellular bacterium Coxiella burnetii. While transmission is primarily but not exclusively airborne, ticks are usually thought to act as vectors on the basis of early microscopy studies. However, recent observations revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii, calling the importance of tick-borne transmission into question. In this study, we re-evaluated the vector competence of the African soft tick Ornithodoros moubata for an avirulent strain of C. burnetii. To this end, we used an artificial feeding system to initiate infection of ticks, specific molecular tools to monitor further infections, and culture assays in axenic and cell media to check for the viability of C. burnetii excreted by ticks. We observed typical traits associated with vector competence: The exposure to an infected blood meal resulted in viable and persistent infections in ticks, trans-stadial transmissions of infection from nymphs to adults and the ability of adult ticks to transmit infectious C. burnetii. However, in contrast to early studies, we found that infection differed substantially between tick organs. In addition, while adult female ticks were infected, we did not observe C. burnetii in eggs, suggesting that transovarial transmission is not effective. Finally, we detected only a sporadic presence of C. burnetii DNA in tick faeces, but no living bacterium was further isolated in culture assays, suggesting that excretion in faeces is not a common mode of transmission in O. moubata. The intracellular bacterium Coxiella burnetii is the agent of Q fever, a widespread zoonotic disease. Some early detection reports and microscopy studies identified ticks as vectors of Q fever but more recent studies and molecular analyses revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii: It raises questions of whether ticks play an important role in Q fever transmission. In our study, we therefore experimentally re-evaluate the vector competence of the African soft tick Ornithodoros moubata for C. burnetii. We found that O. moubata can be infected by C. burnetii after the exposure to an infected blood meal. It resulted in viable and persistent infections in ticks, a trans-stadial transmission and the ability of adult ticks to transmit infection when feeding. Infection was however not transmitted transovarially or by faeces as early reported. Overall, we conclude that O. moubata may act as a driver of the transmission and of the spatial dispersal of Q fever among vertebrates where this tick is present in Africa.
Collapse
Affiliation(s)
- Marie Buysse
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France
- * E-mail: (MB); (OD)
| | - Maxime Duhayon
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, 34398 Montpellier, France
| | - Franck Cantet
- IRIM, CNRS, Université de Montpellier, Montpellier, France
| | - Matteo Bonazzi
- IRIM, CNRS, Université de Montpellier, Montpellier, France
| | - Olivier Duron
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
- CREES (Centre de Recherche en Écologie et Évolution de la Santé), Montpellier, France
- * E-mail: (MB); (OD)
| |
Collapse
|
14
|
Abeykoon AMH, Clark NJ, Soares Magalhaes RJ, Vincent GA, Stevenson MA, Firestone SM, Wiethoelter AK. Coxiella burnetii in the environment: A systematic review and critical appraisal of sampling methods. Zoonoses Public Health 2020; 68:165-181. [PMID: 33314733 DOI: 10.1111/zph.12791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023]
Abstract
Q fever is a zoonotic disease caused by the intracellular bacterium, Coxiella burnetii. Its primary mode of transmission is by inhalation of aerosols originating from infected animals and contaminated environments. The organism has a very low infective dose, can persist in the environment for long periods of time and large outbreaks fuelled by windborne spread have been previously reported. Detection of C. burnetii in the environment is therefore important during human and animal outbreak investigations and for the control and prevention of Q fever. This study aimed to systematically review and critically appraise the published literature on sampling methods used to detect C. burnetii from different environmental samples. A search of four electronic databases with subsequent hand searching identified 47 eligible articles published since 1935. These articles described sampling of dust, air, soil and liquids in attempts to detect C. burnetii during 19 Q fever outbreaks and in 28 endemic settings. Environmental positivity was most commonly associated with ruminant livestock populations. Evidence describing spatio-temporal characteristics and associated geographical dispersion gradients was limited. The most commonly tested sample type was dust which also yielded the highest bacterial loads of >108 bacteria/cloth. The MD8 (Sartorius) air sampler was used widely for air sampling. Soil was the only sample type for which a validated laboratory protocol was established specifically for C. burnetii. Each environmental sample type has its advantages and limitations which are discussed in detail and a simplified framework to guide decisions around environmental sampling for C. burnetii is provided. In any type of environmental sampling, it is recommended to use standardized and validated methods and to match the most ideal sampling strategy and timing with the research context. These conditions are essential to be considered when designing future Q fever management plans that involve environmental sampling for C. burnetii.
Collapse
Affiliation(s)
- A M Hasanthi Abeykoon
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Joshua Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ricardo Jorge Soares Magalhaes
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,Children's Health and Environment Program, UQ Children's Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Gemma Anne Vincent
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC, Australia
| | - Mark Anthony Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Simon Matthew Firestone
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anke Katrin Wiethoelter
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Coxiella burnetii-Infected NK Cells Release Infectious Bacteria by Degranulation. Infect Immun 2020; 88:IAI.00172-20. [PMID: 32817330 DOI: 10.1128/iai.00172-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are critically involved in the early immune response against various intracellular pathogens, including Coxiella burnetii and Chlamydia psittaci Chlamydia-infected NK cells functionally mature, induce cellular immunity, and protect themselves by killing the bacteria in secreted granules. Here, we report that infected NK cells do not allow intracellular multiday growth of Coxiella, as is usually observed in other host cell types. C. burnetii-infected NK cells display maturation and gamma interferon (IFN-γ) secretion, as well as the release of Coxiella-containing lytic granules. Thus, NK cells possess a potent program to restrain and expel different types of invading bacteria via degranulation. Strikingly, though, in contrast to Chlamydia, expulsed Coxiella organisms largely retain their infectivity and, hence, escape the cell-autonomous self-defense mechanism in NK cells.
Collapse
|
16
|
Oundo JW, Villinger J, Jeneby M, Ong’amo G, Otiende MY, Makhulu EE, Musa AA, Ouso DO, Wambua L. Pathogens, endosymbionts, and blood-meal sources of host-seeking ticks in the fast-changing Maasai Mara wildlife ecosystem. PLoS One 2020; 15:e0228366. [PMID: 32866142 PMCID: PMC7458302 DOI: 10.1371/journal.pone.0228366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/27/2020] [Indexed: 01/07/2023] Open
Abstract
The role of questing ticks in the epidemiology of tick-borne diseases in Kenya's Maasai Mara National Reserve (MMNR), an ecosystem with intensified human-wildlife-livestock interactions, remains poorly understood. We surveyed the diversity of questing ticks, their blood-meal hosts, and tick-borne pathogens to understand potential effects on human and livestock health. By flagging and hand-picking from vegetation in 25 localities, we collected 1,465 host-seeking ticks, mostly Rhipicephalus and Amblyomma species identified by morphology and molecular analysis. We used PCR with high-resolution melting (HRM) analysis and sequencing to identify Anaplasma, Babesia, Coxiella, Ehrlichia, Rickettsia, and Theileria pathogens and blood-meal remnants in 231 tick pools. We detected blood-meals from humans, wildebeest, and African buffalo in Rh. appendiculatus, goat in Rh. evertsi, sheep in Am. gemma, and cattle in Am. variegatum. Rickettsia africae was detected in Am. gemma (MIR = 3.10) that had fed on sheep and in Am. variegatum (MIR = 250) that had fed on cattle. We found Rickettsia spp. in Am. gemma (MIR = 9.29) and Rh. evertsi (MIR = 200), Anaplasma ovis in Rh. appendiculatus (MIR = 0.89) and Rh. evertsi (MIR = 200), Anaplasma bovis in Rh. appendiculatus (MIR = 0.89), and Theileria parva in Rh. appendiculatus (MIR = 24). No Babesia, Ehrlichia, or Coxiella pathogens were detected. Unexpectedly, species-specific Coxiella sp. endosymbionts were detected in all tick genera (174/231 pools), which may affect tick physiology and vector competence. These findings show that ticks from the MMNR are infected with zoonotic R. africae and unclassified Rickettsia spp., demonstrating risk of African tick-bite fever and other spotted-fever group rickettsioses to locals and visitors. The protozoan pathogens identified may also pose risk to livestock production. The diverse vertebrate blood-meals of questing ticks in this ecosystem including humans, wildlife, and domestic animals, may amplify transmission of tick-borne zoonoses and livestock diseases.
Collapse
Affiliation(s)
- Joseph Wang’ang’a Oundo
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Maamun Jeneby
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - George Ong’amo
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | | | - Edward Edmond Makhulu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Ali Abdulahi Musa
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Daniel Obado Ouso
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Lillian Wambua
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
- * E-mail:
| |
Collapse
|
17
|
Segura JA, Isaza JP, Botero LE, Alzate JF, Gutiérrez LA. Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLoS One 2020; 15:e0234005. [PMID: 32609768 PMCID: PMC7329104 DOI: 10.1371/journal.pone.0234005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rhipicephalus microplus is recognized as a tick species highly prevalent in cattle, with a wide pantropical distribution that seems to continue spreading geographically. However, its role as a biological vector has been scarcely studied in the livestock context. In this study, a 16S rRNA next-generation sequencing analysis was used to determine bacterial diversity in salivary glands and gut of R. microplus from two contrasting livestock agroecosystems in Antioquia, Colombia. Both the culture-independent approach (CI) and the culture-dependent (CD) approach were complementarily adopted in this study. A total of 341 unique OTUs were assigned, the richness showed to be higher in the Northern than in the Middle Magdalena region, and a high diversity was found at the phylum and genus levels in the samples obtained. With the CI approach, Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most common phylum of bacteria regardless of the organ, or geographic origin of the specimens analyzed. While the relative abundance of bacteria at a phylum level with the CD approach varied between analyzed samples, the data obtained suggest that a high diversity of species of bacteria occurs in R. microplus from both livestock agroecosystems. Bacterial genera such as Anaplasma, Coxiella, and Ehrlichia, recognized for their implications in tick-borne diseases, were also detected, together with endosymbionts such as Lysinibacillus, previously reported as a potential tool for biological control. This information is useful to deepen the knowledge about microbial diversity regarding the relations between endosymbionts and pathogens and could facilitate the future development of epidemiological surveillance in livestock systems.
Collapse
Affiliation(s)
- Juan A. Segura
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| | - Juan P. Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| | - Luz E. Botero
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Lina A. Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia
| |
Collapse
|
18
|
Omitola OO, Taylor-Robinson AW. Emerging and re-emerging bacterial zoonoses in Nigeria: current preventive measures and future approaches to intervention. Heliyon 2020; 6:e04095. [PMID: 32510001 PMCID: PMC7262526 DOI: 10.1016/j.heliyon.2020.e04095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/03/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022] Open
Abstract
A characteristic of bacterial zoonoses, diseases caused by bacteria that can be transmitted to humans from animals, is a propensity to re-emerge. Several studies demonstrate their ongoing transmission in Nigeria, the most populous country in Africa. However, as local epidemiological data on bacterial zoonoses are inadequate the extent and impact of these infectious diseases is under-reported. Consequently, they are not a targeted priority of national public health policies. This limited recognition is despite indications of their possible roles in the widespread prevalence of non-malarial undifferentiated fever in Nigeria. While a number of animal reservoirs and arthropod vectors have been identified in the transmission routes of these diseases, an escalation of cases of undiagnosed febrile illness highlights the urgent need for a comprehensive assessment of other potential reservoirs, vectors and transmission cycles that may increase the local risk of infection with bacterial zoonoses. Animal health interventions have been proposed as a cost-effective strategy. Here, we present a broad overview of bacterial zoonotic infections of humans in Nigeria in the context of evolving epidemiological patterns. Further, we propose that facilitating the operation of a community-based One Health program is essential to providing the comprehensive epidemiological information that is required to improve prioritization of bacterial zoonoses. This would provide a driver for much needed investment in relevant public health interventions in Africa's most populous country.
Collapse
Affiliation(s)
- Olaitan O. Omitola
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Andrew W. Taylor-Robinson
- Infectious Diseases Research Group, School of Health, Medical & Applied Sciences, Central Queensland University, Brisbane, Australia
| |
Collapse
|
19
|
Körner S, Makert GR, Mertens-Scholz K, Henning K, Pfeffer M, Starke A, Nijhof AM, Ulbert S. Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks. Parasit Vectors 2020; 13:75. [PMID: 32059686 PMCID: PMC7023696 DOI: 10.1186/s13071-020-3956-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background The bacterium Coxiella burnetii is the etiological agent of Q fever and is mainly transmitted via inhalation of infectious aerosols. DNA of C. burnetii is frequently detected in ticks, but the role of ticks as vectors in the epidemiology of this agent is still controversial. In this study, Ixodes ricinus and Dermacentor marginatus adults as well as I. ricinus nymphs were fed on blood spiked with C. burnetii in order to study the fate of the bacterium within putative tick vectors. Methods Blood-feeding experiments were performed in vitro in silicone-membrane based feeding units. The uptake, fecal excretion and transstadial transmission of C. burnetii was examined by quantitative real-time PCR as well as cultivation of feces and crushed tick filtrates in L-929 mouse fibroblast cells and cell-free culture medium. Results Ticks successfully fed in the feeding system with engorgement rates ranging from 29% (D. marginatus) to 64% (I. ricinus adults). Coxiella burnetii DNA was detected in the feces of both tick species during and after feeding on blood containing 105 or 106 genomic equivalents per ml blood (GE/ml), but not when fed on blood containing only 104 GE/ml. Isolation and cultivation demonstrated the infectivity of C. burnetii in shed feces. In 25% of the I. ricinus nymphs feeding on inoculated blood, a transstadial transmission to the adult stage was detected. Females that molted from nymphs fed on inoculated blood excreted C. burnetii of up to 106 genomic equivalents per mg of feces. Conclusions These findings show that transstadial transmission of C. burnetii occurs in I. ricinus and confirm that I. ricinus is a potential vector for Q fever. Transmission from both tick species might occur by inhalation of feces containing high amounts of viable C. burnetii rather than via tick bites.![]()
Collapse
Affiliation(s)
- Sophia Körner
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Gustavo R Makert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Klaus Henning
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| |
Collapse
|
20
|
Ullah Q, El-Adawy H, Jamil T, Jamil H, Qureshi ZI, Saqib M, Ullah S, Shah MK, Khan AZ, Zubair M, Khan I, Mertens-Scholz K, Henning K, Neubauer H. Serological and Molecular Investigation of Coxiella burnetii in Small Ruminants and Ticks in Punjab, Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214271. [PMID: 31689887 PMCID: PMC6861879 DOI: 10.3390/ijerph16214271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023]
Abstract
Coxiellosis is a zoonotic disease caused by the obligate intracellular bacterium Coxiella burnetii affecting the productive and reproductive capabilities of animals. This study was conducted to gain insight into the seroprevalence of coxiellosis in small ruminants in seven farms of the Punjab, Pakistan. Potential risk factors were assessed. In total, 1000 serum samples (500 from sheep and 500 from goats) and 163 ticks were collected from the ruminants. All these 163 ticks were merged into 55 pools (29 pools for ticks from sheep and 26 pools for ticks from goat). Serum samples were investigated using an indirect ELISA and PCR. Coxiella burnetii DNA was detected in 29 pooled seropositive samples and 11 pooled ticks by real-time qPCR. Serological analysis revealed a prevalence of 15.6% and 15.0% in sheep and goats, respectively. A significant association was found between seropositivity and different variables like district, lactational status, reproductive status, body condition and reproductive disorders. Univariate analysis showed that detection of C. burnetii DNA in tick pools was significantly associated with the presence of ticks on sheep and goats. However, a non-significant association was found for the prevalence of C. burnetii DNA in serum pools. Hence, C. burnetii infection is prevalent in small ruminants and ticks maintained at livestock farms in Punjab, Pakistan.
Collapse
Affiliation(s)
- Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
- Department of Theriogenology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| | - Hosny El-Adawy
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
- Faculty of Veterinary Medicine, Kafrelsheik University, Kafr El-Sheik 35516, Egypt.
| | - Tariq Jamil
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| | - Huma Jamil
- Department of Theriogenology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Zafar Iqbal Qureshi
- Department of Theriogenology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Shakeeb Ullah
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Muhammad Kamal Shah
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Alam Zeb Khan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Muhammad Zubair
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Kashmir 12350, Pakistan.
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, sub-campus Jhang, Jhang 35200, Pakistan.
| | - Katja Mertens-Scholz
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| | - Klaus Henning
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| |
Collapse
|
21
|
Detection of Coxiella burnetii Using Silicon Microring Resonator in Patient Blood Plasma. MICROMACHINES 2019; 10:mi10070427. [PMID: 31252533 PMCID: PMC6680664 DOI: 10.3390/mi10070427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022]
Abstract
Blood plasma from patients is a powerful resource for diagnosing infectious disease due to it having many genetic materials as well as being relatively easy to obtain. Thus, various biosensors have been investigated for diagnosing diseases in blood plasma. However, there are no optimized and validated sensors for clinical use due to the low sensitivity, complexity, and difficulties of removing the inhibitors from plasma samples. In this study, we described a silicon microring resonator sensor used to detect Coxiella burnetii from the blood plasma of Q-fever patients in a label-free, real-time manner. Q-fever is an infectious disease caused by Coxiella burnetii via direct contact or inhalation aerosols. We validated this biosensor in the blood plasma of 35 clinical samples (including 16 Q fever samples infected with Coxiella burnetii and 19 samples infected with other febrile diseases. The biosensors are capable of rapid (10 min), highly sensitive (87.5%), and specific (89.5%) detection in plasma samples compared to the use of the conventional method.
Collapse
|
22
|
The microbiota of hematophagous ectoparasites collected from migratory birds. PLoS One 2018; 13:e0202270. [PMID: 30148833 PMCID: PMC6110481 DOI: 10.1371/journal.pone.0202270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
Arthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community. A total of 194 ectoparasites were collected from 115 avian hosts and classified into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding showed that endosymbionts were the most abundant genera of the microbial community, including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia and Arsenophonus for the other arthropod group. Genera including pathogenic species were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the common swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally, molecular characterization of genera, including both pathogenic and symbiont species, plays a pivotal role in the design of targeted molecular diagnostics.
Collapse
|
23
|
Koo B, Jin CE, Park SY, Lee TY, Nam J, Jang YR, Kim SM, Kim JY, Kim SH, Shin Y. A rapid bio-optical sensor for diagnosing Q fever in clinical specimens. JOURNAL OF BIOPHOTONICS 2018; 11:e201700167. [PMID: 29024445 DOI: 10.1002/jbio.201700167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/15/2017] [Accepted: 10/06/2017] [Indexed: 05/16/2023]
Abstract
Recent zoonotic outbreaks, such as Zika, Middle East respiratory syndrome and Ebola, have highlighted the need for rapid and accurate diagnostic assays that can be used to aid pathogen control. Q fever is a zoonotic disease caused by the transmission of Coxiella burnetii that can cause serious illness in humans through aerosols and is considered a potential bioterrorism agent. However, the existing assays are not suitable for the detection of this pathogen due to its low levels in real samples. We here describe a rapid bio-optical sensor for the accurate detection of Q fever and validate its clinical utility. By combining a bio-optical sensor, that transduces the presence of the target DNA based on binding-induced changes in the refractive index on the waveguide surface in a label-free and real-time manner, with isothermal DNA amplification, this new diagnostic tool offers a rapid (<20 min), 1-step DNA amplification/detection method. We confirmed the clinical sensitivity (>90%) of the bio-optical sensor by detecting C. burnetii in 11 formalin-fixed, paraffin-embedded liver biopsy samples from acute Q fever hepatitis patients and in 16 blood plasma samples from patients in which Q fever is the cause of fever of unknown origin.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and the Biomedical Engineering Research Center, Asan Institute of Life Sciences 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and the Biomedical Engineering Research Center, Asan Institute of Life Sciences 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University College of Medicine 59 Daesangwan-ro, Yongsan-gu, Seoul, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeonghun Nam
- Department of Laboratory Medicine, School of Medicine, Korea University 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Young-Rock Jang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
- Division of Infectious Disease, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774 beon-gil, Namdong-gu, Incheon, Republic of Korea
| | - Sun Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and the Biomedical Engineering Research Center, Asan Institute of Life Sciences 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
24
|
Desjardins I, Joulié A, Pradier S, Lecollinet S, Beck C, Vial L, Dufour P, Gasqui P, Legrand L, Edouard S, Sidi-Boumedine K, Rousset E, Jourdain E, Leblond A. Seroprevalence of horses to Coxiella burnetii in an Q fever endemic area. Vet Microbiol 2017; 215:49-56. [PMID: 29426406 DOI: 10.1016/j.vetmic.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/28/2022]
Abstract
Coxiella burnetii can infect many animal species, but its circulation dynamics in and through horses is still unclear. This study evaluated horse exposure in an area known to be endemic for ruminants and humans. We assessed antibody prevalence in horse serum by ELISA, and screened by qPCR horse blood, ticks found on horses and dust from stables. Horse seroprevalence was 4% (n = 335, 37 stables) in 2015 and 12% (n = 294, 39 stables) in 2016. Of 199 horses sampled both years, 13 seroconverted, eight remained seropositive, and one seroreverted. Seropositive horses were located close to reported human cases, yet none displayed Q fever-compatible syndromes. Coxiella DNA was detected in almost 40% of collected ticks (n = 59/148 in 2015; n = 103/305 in 2016), occasionally in dust (n = 3/46 in 2015; n = 1/14 in 2016) but never in horse blood. Further studies should be implemented to evaluate if horses may be relevant indicators of zoonotic risk in urban and suburban endemic areas.
Collapse
Affiliation(s)
| | - Aurélien Joulié
- University of Lyon, VetAgroSup, Marcy L'Etoile, France; EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRA, VetAgroSup, 63122 Saint-Genès Champanelle, France; ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Laboratory of Sophia Antipolis, Animal Q Fever Unit, Sophia Antipolis, France
| | - Sophie Pradier
- IHAP, University of Toulouse, INRA, ENVT, Toulouse, France
| | - Sylvie Lecollinet
- ANSES, Animal Health Laboratory, EURL on Equine Diseases, Maisons-Alfort, France
| | - Cécile Beck
- ANSES, Animal Health Laboratory, EURL on Equine Diseases, Maisons-Alfort, France
| | | | - Philippe Dufour
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Laboratory of Sophia Antipolis, Animal Q Fever Unit, Sophia Antipolis, France
| | - Patrick Gasqui
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRA, VetAgroSup, 63122 Saint-Genès Champanelle, France
| | - Loïc Legrand
- LABÉO Frank Duncombe Laboratory, EA7450 BIOTARGEN, Université de Caen Normandie IFR 146 ICORE, 14053 Caen cedex 4, France
| | - Sophie Edouard
- Aix-Marseille University, CNRS 7278, IRD 198, Inserm U1095, Assistance Publique-Hôpitaux de Marseille, URMITE, IHU Méditerranée-Infection, Marseille, France
| | - Karim Sidi-Boumedine
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Laboratory of Sophia Antipolis, Animal Q Fever Unit, Sophia Antipolis, France
| | - Elodie Rousset
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Laboratory of Sophia Antipolis, Animal Q Fever Unit, Sophia Antipolis, France
| | - Elsa Jourdain
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRA, VetAgroSup, 63122 Saint-Genès Champanelle, France
| | - Agnès Leblond
- University of Lyon, VetAgroSup, Marcy L'Etoile, France; EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRA, VetAgroSup, 63122 Saint-Genès Champanelle, France.
| |
Collapse
|
25
|
Mori M, Mertens K, Cutler SJ, Santos AS. Critical Aspects for Detection of Coxiella burnetii. Vector Borne Zoonotic Dis 2017; 17:33-41. [PMID: 28055578 DOI: 10.1089/vbz.2016.1958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coxiella burnetii is a globally distributed zoonotic γ-proteobacterium with an obligatory intracellular lifestyle. It is the causative agent of Q fever in humans and of coxiellosis among ruminants, although the agent is also detected in ticks, birds, and various other mammalian species. Requirements for intracellular multiplication together with the necessity for biosafety level 3 facilities restrict the cultivation of C. burnetii to specialized laboratories. Development of a novel medium formulation enabling axenic growth of C. burnetii has facilitated fundamental genetic studies. This review provides critical insights into direct diagnostic methods currently available for C. burnetii. It encompasses molecular detection methods, isolation, and propagation of the bacteria and its genetic characterization. Differentiation of C. burnetii from Coxiella-like organisms is an essential diagnostic prerequisite, particularly when handling and analyzing ticks.
Collapse
Affiliation(s)
- Marcella Mori
- 1 Bacterial Zoonoses of Livestock, Operational Directorate Bacterial Diseases, Veterinary and Agrochemical Research Centre, CODA-CERVA , Brussels, Belgium .,2 Belgian Reference Centre for Coxiella burnetii and Bartonella , Brussels, Belgium
| | - Katja Mertens
- 3 Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Bacterial Infections and Zoonoses , Jena, Germany
| | | | - Ana Sofia Santos
- 5 Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge , Águas de Moura, Portugal
| |
Collapse
|
26
|
Papa A, Tsioka K, Kontana A, Papadopoulos C, Giadinis N. Bacterial pathogens and endosymbionts in ticks. Ticks Tick Borne Dis 2016; 8:31-35. [PMID: 27686386 DOI: 10.1016/j.ttbdis.2016.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 02/02/2023]
Abstract
Ticks collected from goats in northern Greece were tested for the presence of tick-borne bacteria. Among adult ticks, 37 (57.8%) were Rhipicephalus bursa, 11 (17.2%) Dermacentor marginatus, 10 (15.6%) Ixodes ricinus, 3 (4.7%) Rhipicephalus sanguineus sensu lato and 2 (3.1%) Haemaphysalis parva; one (1.6%) Rhipicephalus spp. tick was nymph. Rickettsia monacensis, Rickettsia massilae, Anaplasma phagocytophilum and Anaplasma platys were detected in I. ricinus and Rh. bursa ticks. A variety of Coxiella-like endosymbionts were detected in all tick genera tested, forming distinct clades from Coxiella burnetii in the phylogenetic tree based on the 16S rRNA gene. An additional endosymbiont, Candidatus Midichloria mitochondrii, was detected in most of the I. ricinus ticks. Surveillance for human pathogens in ticks provides knowledge helpful for the public health, while further studies are needed to determine the role of endosymbionts in tick physiology, vector competence and probably in public health.
Collapse
Affiliation(s)
- Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece.
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Anastasia Kontana
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
| | | | - Nektarios Giadinis
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
27
|
Pearson T, Cocking JH, Hornstra HM, Keim P. False detection of Coxiella burnetii-what is the risk? FEMS Microbiol Lett 2016; 363:fnw088. [PMID: 27190242 PMCID: PMC4853758 DOI: 10.1093/femsle/fnw088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/13/2023] Open
Affiliation(s)
- Talima Pearson
- Microbial Genetics and Genomics, Northern Arizona University, 1395 S. Knoles Dr. Bldg. 56, Flagstaff, AZ 86011, USA
| | - Jill H Cocking
- Microbial Genetics and Genomics, Northern Arizona University, 1395 S. Knoles Dr. Bldg. 56, Flagstaff, AZ 86011, USA
| | - Heidie M Hornstra
- Microbial Genetics and Genomics, Northern Arizona University, 1395 S. Knoles Dr. Bldg. 56, Flagstaff, AZ 86011, USA
| | - Paul Keim
- Microbial Genetics and Genomics, Northern Arizona University, 1395 S. Knoles Dr. Bldg. 56, Flagstaff, AZ 86011, USA
| |
Collapse
|