1
|
Liu P, Zhang Q, Liu F. Biological roles and clinical applications of EpCAM in HCC. Discov Oncol 2025; 16:319. [PMID: 40087210 PMCID: PMC11909382 DOI: 10.1007/s12672-025-02095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is an important biomarker in tumors. In hepatocellular carcinoma (HCC), EpCAM + cells exhibit high invasiveness, tumorigenic ability, therapeutic resistance, and self-renewal ability, often identified as liver cancer stem cells (CSCs). Detecting EpCAM + cells in tumor lesions and circulation is valuable for predicting patient prognosis and monitoring therapeutic outcomes, emphasizing its clinical significance. Given its broad expression in HCC, especially in CSCs and circulating tumor cells (CTCs), EpCAM-targeting agents have garnered substantial research interest. However, the role of EpCAM in HCC progression and its regulatory mechanisms remains poorly understood. Furthermore, clinical applications of EpCAM, such as liquid biopsy and targeted therapies, are still controversial. This review summarizes the biological properties of EpCAM + HCC cells, explores the regulatory mechanisms governing EpCAM expression, and discusses its clinical significance of using EpCAM as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Peng Liu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Zhang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Ding T, Li X, Zhang L, Wei Z, Xiong C, Wang H, Hao X, Zeng X. Comparison of androgen receptor mutation detection between plasma extracellular vesicle DNA and cell-free DNA and its relationship to prostate cancer prognosis. Ann Med 2024; 56:2426770. [PMID: 39535155 PMCID: PMC11562022 DOI: 10.1080/07853890.2024.2426770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In liquid biopsy, mutation detection is primarily performed using cell-free DNA (cfDNA). However, the numerous advantages of extracellular vesicle (EV) DNA for mutation detection have gradually garnered the attention of researchers in recent years. This study aimed to compare the differences between EV DNA and cfDNA in mutation detection and explore the role of plasma androgen receptor (AR) mutations in the prognosis of prostate cancer (PCa). METHODS We compared the biological characteristics of plasma extracellular vesicle DNA (p-EV DNA) and cfDNA by capillary electrophoresis and concentration detection. Subsequently, we performed pan-oncogene-targeted sequencing in paired tissue and plasma samples from five patients with PCa to verify the feasibility of mutation detection using p-EV DNA and cfDNA. Further, we conducted AR mutation detection in expanded samples to compare the differences between EV DNA and cfDNA in mutation detection and to analyse their role in PCa. RESULTS p-EV DNA fragments were larger than plasma cell-free DNA (p-cfDNA) fragments; however, there was no significant difference in their concentrations in the plasma of patients with PCa. Feasibility analysis revealed that major mutations associated with PCa detected in tissue samples could be identified in both p-EV DNA and p-cfDNA. Advantage comparison found that, although cfDNA could detect more mutations, AR mutations in EV DNA were more strongly associated with a poor prognosis of PCa than cfDNA. CONCLUSION Mutation detection using either EV DNA or cfDNA is both feasible in PCa liquid biopsies, and EV DNA AR mutations have an advantage in prognostic assessment for PCa. This study lays the foundation for future research on EV DNA-related biomarkers.
Collapse
Affiliation(s)
- Ting Ding
- School of Medicine, Northwest University, Xi’an, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Xiao Li
- School of Medicine, Northwest University, Xi’an, China
| | - Longlong Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Zhen Wei
- School of Medicine, Northwest University, Xi’an, China
- Xi’an Area Medical Laboratory Center, Xi’an, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoke Hao
- School of Medicine, Northwest University, Xi’an, China
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Xi’an Area Medical Laboratory Center, Xi’an, China
| | - Xianfei Zeng
- School of Medicine, Northwest University, Xi’an, China
- Xi’an Area Medical Laboratory Center, Xi’an, China
| |
Collapse
|
3
|
Jeppesen DK, Zhang Q, Coffey RJ. Extracellular vesicles and nanoparticles at a glance. J Cell Sci 2024; 137:jcs260201. [PMID: 39641198 DOI: 10.1242/jcs.260201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Cells can communicate with neighboring and more distant cells by secretion of extracellular vesicles (EVs). EVs are lipid bilayer membrane-bound structures that can be packaged with proteins, nucleic acids and lipids that mediate cell-cell signaling. EVs are increasingly recognized to play numerous important roles in both normal physiological processes and pathological conditions. Steady progress in the field has uncovered a great diversity and heterogeneity of distinct vesicle types that appear to be secreted from most, if not all, cell types. Recently, it has become apparent that cells also release non-vesicular extracellular nanoparticles (NVEPs), including the newly discovered exomeres and supermeres. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the diversity of EVs and nanoparticles that are released from cells into the extracellular space, highlighting recent advances in the field.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Elshafie NO, Gribskov M, Lichti NI, Sayedahmed EE, Childress MO, Pires dos Santos A. MicroRNAs implicated in canine diffuse large B-cell lymphoma prognosis. FEBS Open Bio 2024; 14:1899-1913. [PMID: 39218619 PMCID: PMC11532975 DOI: 10.1002/2211-5463.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most prevalent subtype of non-Hodgkin lymphoma (NHL) in domestic dogs, with many similarities to its human counterpart. The progression of the disease is rapid, and treatment must be initiated early to achieve cancer remission and extend life. This study examined the relationship between progression-free survival (PFS) and microRNA (miRNA) expression in dogs with DLBCL. miRNAs are small non-coding RNA molecules that typically regulate gene expression post-transcriptionally. They are involved in several pathophysiological processes, including the growth and progression of cancer. Based on the analysis of small RNA sequencing (sRNA-seq) data, we validated a group of miRNAs in lymph nodes from 44 DLBCL-affected dogs with known outcomes. We used quantitative PCR to quantify their expression and report a specific subset of miRNAs is associated with decreased PFS in dogs with DLBCL. The miR-192-5p and miR-16-5p expression were significantly downregulated in dogs with increased PFS. These results indicate that miRNA profiling may potentially identify dogs with DLBCL that will experience poor outcomes following treatment. Identifying specific miRNAs that correlate with the progression of canine DLBCL could aid the development of individualized treatment regimens for dogs.
Collapse
Affiliation(s)
- Nelly O. Elshafie
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
| | - Michael Gribskov
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | | | | | - Michael O. Childress
- Department of Veterinary Clinical SciencesPurdue UniversityWest LafayetteINUSA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Andrea Pires dos Santos
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Bindley Bioscience CenterPurdue UniversityWest LafayetteINUSA
- Department of Veterinary Clinical SciencesPurdue UniversityWest LafayetteINUSA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
5
|
Min L, Bu F, Meng J, Liu X, Guo Q, Zhao L, Li Z, Li X, Zhu S, Zhang S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. eLife 2024; 12:RP88675. [PMID: 39121006 PMCID: PMC11315448 DOI: 10.7554/elife.88675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Jingxin Meng
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | | | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | | | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking UniversityBeijingChina
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| |
Collapse
|
6
|
Tai MC, Bantis LE, Parhy G, Kato T, Tanaka I, Chow CW, Fujimoto J, Behrens C, Hase T, Kawaguchi K, Fahrmann JF, Ostrin EJ, Yokoi K, Chen-Yoshikawa TF, Hasegawa Y, Hanash SM, Wistuba II, Taguchi A. Circulating microRNA Panel for Prediction of Recurrence and Survival in Early-Stage Lung Adenocarcinoma. Int J Mol Sci 2024; 25:2331. [PMID: 38397007 PMCID: PMC10888571 DOI: 10.3390/ijms25042331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Early-stage lung adenocarcinoma (LUAD) patients remain at substantial risk for recurrence and disease-related death, highlighting the unmet need of biomarkers for the assessment and identification of those in an early stage who would likely benefit from adjuvant chemotherapy. To identify circulating miRNAs useful for predicting recurrence in early-stage LUAD, we performed miRNA microarray analysis with pools of pretreatment plasma samples from patients with stage I LUAD who developed recurrence or remained recurrence-free during the follow-up period. Subsequent validation in 85 patients with stage I LUAD resulted in the development of a circulating miRNA panel comprising miR-23a-3p, miR-320c, and miR-125b-5p and yielding an area under the curve (AUC) of 0.776 in predicting recurrence. Furthermore, the three-miRNA panel yielded an AUC of 0.804, with a sensitivity of 45.8% at 95% specificity in the independent test set of 57 stage I and II LUAD patients. The miRNA panel score was a significant and independent factor for predicting disease-free survival (p < 0.001, hazard ratio [HR] = 1.64, 95% confidence interval [CI] = 1.51-4.22) and overall survival (p = 0.001, HR = 1.51, 95% CI = 1.17-1.94). This circulating miRNA panel is a useful noninvasive tool to stratify early-stage LUAD patients and determine an appropriate treatment plan with maximal efficacy.
Collapse
Affiliation(s)
- Mei-Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Leonidas E. Bantis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gargy Parhy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Taketo Kato
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (T.H.); (Y.H.)
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (T.H.); (Y.H.)
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (S.M.H.)
| | - Edwin J. Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Toyofumi F. Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (K.K.); (T.F.C.-Y.)
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan (T.H.); (Y.H.)
- National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (S.M.H.)
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (G.P.); (T.K.)
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya 464-8681, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan
| |
Collapse
|
7
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
8
|
Zhang Y, Zhu YY, Chen Y, Zhang L, Wang R, Ding X, Zhang H, Zhang CY, Zhang C, Gu WJ, Wang C, Wang JJ. Urinary-derived extracellular vesicle microRNAs as non-invasive diagnostic biomarkers for early-stage renal cell carcinoma. Clin Chim Acta 2024; 552:117672. [PMID: 37995985 DOI: 10.1016/j.cca.2023.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND AIMS The potential of urinary-derived extracellular vesicle (uEV) microRNAs (miRNAs) as noninvasive molecular biomarkers for identifying early-stage renal cell carcinoma (RCC) patients is rarely explored. The present study aims to explore the possibility of uEV miRNAs as novel molecular biomarkers for distinguishing early-stage RCC. MATERIALS AND METHODS uEVs were extracted by ExoQuick-TC™ kit and miRNA concentrations were measured by RT-qPCR. ROC curves and bioinformatics analysis were employed to predict the diagnostic efficacy and regulatory mechanisms of dysregulated miRNAs. RESULTS Through a multiphase case-control study on uEV miRNAs screening, training, and validation in RCC cells (ACHN, Caki-1) and control cells (HK-2) and in uEVs of 125 RCC patients and 128 age- and sex-matched controls, we successfully identified four uEVs miRNAs (miR-135b-5p, miR-196b-5p, miR-200c-3p, and miR-203a-3p) were significantly and stably upregulated in RCC in vitro and in vivo. When adjusted with estimated glomerular filtration rate (eGFR), the AUC of the three-uEV miRNA panel (miR-135b-5p, miR-200c-3p, and miR-203a-3p) was 0.785 (95 % CI = 0.729-0.842, P < 0.0001) for discriminating RCC patients from controls. Notably, this panel exhibited similar performance in distinguishing early-stage (stage Ⅰ) RCC patients, with an AUC of 0.786 (95 %CI = 0.727-0.844, P < 0.0001). Bioinformatics analysis predicted that candidate miRNAs were involved in cancer progressing. CONCLUSION Our study identified a four uEV miRNAs panel (miR-135b-5p, miR-196b-5p, miR-200c-3p, and miR-203a-3p) may serve as an auxiliary noninvasive indication of early-stage RCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Yuan-Yuan Zhu
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Yang Chen
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Lele Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Rong Wang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Xiaoyu Ding
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Huizi Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Chen-Yu Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wan-Jian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jun-Jun Wang
- Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China; Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Jiang X, Wang S, Liang Q, Liu Y, Liu L. Unraveling the multifaceted role of EpCAM in colorectal cancer: an integrated review of its function and interplay with non-coding RNAs. Med Oncol 2023; 41:35. [PMID: 38151631 DOI: 10.1007/s12032-023-02273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
The epithelial cell adhesion molecule (EpCAM) is a critical glycoprotein involved in cell cycle progression, proliferation, differentiation, migration, and immune evasion. Its role as a target for bispecific antibodies has shown promise in annihilating cancer cells. EpCAM's potential as a biomarker for tumor-initiating cells, characterized by self-renewal and tumorigenic capabilities, underscores its value in early cancer detection, immunotherapy, and targeted drug delivery. While EpCAM monotherapies have been met with limited success, bispecific antibodies targeting both EpCAM and other proteins have exhibited encouraging results in colorectal cancer (CRC) research. The integration of EpCAM-directed nanotechnology in drug delivery systems has emerged as a pivotal innovation in CRC treatment. Moreover, developing chimeric antigen receptor (CAR) T-cell and CAR natural killer (NK) cell therapies opens promising therapeutic avenues for EpCAM-positive CRC patients. Although preliminary, this review sets the stage for future advances. Additionally, this study advances our understanding of the role of non-coding RNAs in CRC, which may be pivotal in gene regulation and could provide insights into the molecular underpinning. The findings suggest that lncRNA, miRNA, and circRNA could serve as novel therapeutic targets or biomarkers, further enriching the landscape of CRC diagnostics and therapeutics.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yiqian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Zhou X, Liu M, Sun L, Cao Y, Tan S, Luo G, Liu T, Yao Y, Xiao W, Wan Z, Tang J. Circulating small extracellular vesicles microRNAs plus CA-125 for treatment stratification in advanced ovarian cancer. J Transl Med 2023; 21:927. [PMID: 38129848 PMCID: PMC10740240 DOI: 10.1186/s12967-023-04774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND No residual disease (R0 resection) after debulking surgery is the most critical independent prognostic factor for advanced ovarian cancer (AOC). There is an unmet clinical need for selecting primary or interval debulking surgery in AOC patients using existing prediction models. METHODS RNA sequencing of circulating small extracellular vesicles (sEVs) was used to discover the differential expression microRNAs (DEMs) profile between any residual disease (R0, n = 17) and no residual disease (non-R0, n = 20) in AOC patients. We further analyzed plasma samples of AOC patients collected before surgery or neoadjuvant chemotherapy via TaqMan qRT-PCR. The combined risk model of residual disease was developed by logistic regression analysis based on the discovery-validation sets. RESULTS Using a comprehensive plasma small extracellular vesicles (sEVs) microRNAs (miRNAs) profile in AOC, we identified and optimized a risk prediction model consisting of plasma sEVs-derived 4-miRNA and CA-125 with better performance in predicting R0 resection. Based on 360 clinical human samples, this model was constructed using least absolute shrinkage and selection operator (LASSO) and logistic regression analysis, and it has favorable calibration and discrimination ability (AUC:0.903; sensitivity:0.897; specificity:0.910; PPV:0.926; NPV:0.871). The quantitative evaluation of Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI) suggested that the additional predictive power of the combined model was significantly improved contrasted with CA-125 or 4-miRNA alone (NRI = 0.471, IDI = 0.538, p < 0.001; NRI = 0.122, IDI = 0.185, p < 0.01). CONCLUSION Overall, we established a reliable, non-invasive, and objective detection method composed of circulating tumor-derived sEVs 4-miRNA plus CA-125 to preoperatively anticipate the high-risk AOC patients of residual disease to optimize clinical therapy.
Collapse
Affiliation(s)
- Xiaofang Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Mu Liu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Lijuan Sun
- Department of Gynecology and Obstetrics, The Central Hospital of Shaoyang, Shaoyang, 422000, People's Republic of China
| | - Yumei Cao
- Department of Gynecology and Obstetrics, The Central Hospital of Shaoyang, Shaoyang, 422000, People's Republic of China
| | - Shanmei Tan
- Department of Gynecology and Obstetrics, The First People's Hospital of Huaihua, The Affiliated Huaihua Hospital of University of South China, Huaihua, 418000, People's Republic of China
| | - Guangxia Luo
- Department of Gynecology and Obstetrics, The First People's Hospital of Huaihua, The Affiliated Huaihua Hospital of University of South China, Huaihua, 418000, People's Republic of China
| | - Tingting Liu
- Department of Gynecology and Obstetrics, The First People's Hospital of Changde, Changde, 415000, People's Republic of China
| | - Ying Yao
- Department of Gynecology and Obstetrics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Wangli Xiao
- Department of Gynecology and Obstetrics, The First People's Hospital of Yueyang, Yueyang, 414000, People's Republic of China
| | - Ziqing Wan
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China.
- Department of Gynecologic Oncology, Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Address: 283 Tongzipo Road, Yuelu District, Changsha, 410013, People's Republic of China.
| |
Collapse
|
11
|
Słomka A, Mocan T, Willms AG, Lukacs-Kornek V, Kornek MT. Hepatocellular carcinoma extracellular vesicle ECG score as a diagnostic tool close to the ideal. Hepatobiliary Surg Nutr 2023; 12:930-932. [PMID: 38115928 PMCID: PMC10727809 DOI: 10.21037/hbsn-23-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Tudor Mocan
- UBBMed Department, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Gastroenterology, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Arnulf G. Willms
- Department of General and Visceral Surgery, German Armed Forces Hospital, Hamburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Miroslaw T. Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
12
|
Park J, Bae M, Seong H, Hong JH, Kang SJ, Park KH, Shin S. An innovative charge-based extracellular vesicle isolation method for highly efficient extraction of EV-miRNAs from liquid samples: miRQuick. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e126. [PMID: 38938899 PMCID: PMC11080872 DOI: 10.1002/jex2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicle-derived microRNAs (EV-miRNAs) are promising biomarkers for early cancer diagnosis. However, existing EV-miRNA extraction technologies have a complex two-step process that results in low extraction efficiency and inconsistent results. This study aimed to develop and evaluate a new single-step extraction method, called miRQuick, for efficient and high-recovery extraction of EV-miRNAs from samples. The miRQuick method involves adding positively charged substances to the sample, causing negatively charged EVs to quickly aggregate and precipitate. A membrane lysate is then added to extract only miRNA. The entire process can be completed within an hour using standard laboratory equipment. We validated the miRQuick method using various analytical techniques and compared its performance to other methods for plasma, urine and saliva samples. The miRQuick method demonstrated significantly higher performance than other methods, not only for blood plasma but also for urine and saliva samples. Furthermore, we successfully extracted and detected nine biomarker candidate miRNAs in the plasma of breast cancer patients using miRQuick. Our results demonstrate that miRQuick is a rapid and efficient method for EV-miRNA extraction with excellent repeatability, making it suitable for various applications including cancer diagnosis.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Micro‐Nano EngineeringKorea UniversitySeoulSouth Korea
- Engineering Research Center for Biofluid BiopsySeoulSouth Korea
| | - Minju Bae
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| | - Hyeonah Seong
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| | - Jin hwa Hong
- Division of Oncology/Hematology, College of MedicineKorea UniversitySeoulSouth Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonSouth Korea
| | - Kyung hwa Park
- Engineering Research Center for Biofluid BiopsySeoulSouth Korea
- Division of Oncology/Hematology, College of MedicineKorea UniversitySeoulSouth Korea
| | - Sehyun Shin
- Department of Micro‐Nano EngineeringKorea UniversitySeoulSouth Korea
- Engineering Research Center for Biofluid BiopsySeoulSouth Korea
- School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
| |
Collapse
|
13
|
Qiu XN, Hong D, Shi ZR, Lu SY, Lai YX, Ren YL, Liu XT, Guo CP, Tan GZ, Wang LC. TNF-α promotes CXCL-1/8 production in keratinocytes by downregulating galectin-3 through NF-κB and hsa-miR-27a-3p pathway to contribute psoriasis development. Immunopharmacol Immunotoxicol 2023; 45:692-700. [PMID: 37358143 DOI: 10.1080/08923973.2023.2229510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Treatment with TNF-α inhibitors improve psoriasis with minimize/minor neutrophils infiltration and CXCL-1/8 expression in psoriatic lesions. However, the fine mechanism of TNF-α initiating psoriatic inflammation by tuning keratinocytes is unclear. Our previous research identified the deficiency of intracellular galectin-3 was sufficient to promote psoriasis inflammation characterized by neutrophil accumulation. This study aims to investigate whether TNF-α participated in psoriasis development through dysregulating galectin-3 expression. METHODS mRNA levels were assessed through quantitative real-time PCR. Flow cytometry was used to detect cell cycle/apoptosis. Western blot was used to evaluate the activation of the NF-κB signaling pathway. HE staining and immunochemistry were used to detect epidermal thickness and MPO expression, respectively. Specific small interfering RNA (siRNA) was used to knock down hsa-miR-27a-3p while plasmids transfection was used to overexpress galectin-3. Further, the multiMiR R package was utilized to predict microRNA-target interaction. RESULTS AND DISCUSSION We found that TNF-α stimulation altered cell proliferation and differentiation and promoted the production of psoriasis-related inflammatory mediators along with the inhibition of galectin-3 expression in keratinocytes. Supplement of galectin-3 could counteract the rise of CXCL-1/8 but not the other phenotypes of keratinocytes induced by TNF-α. Mechanistically, inhibition of the NF-κB signaling pathway could counteract the decrease of galectin-3 and the increase of hsa-miR-27a-3p expression whereas silence of hsa-miR-27a-3p could counteract the decrease of galectin-3 expression induced by TNF-α treatment in keratinocytes. Intradermal injection of murine anti-CXCL-2 antibody greatly alleviated imiquimod-induced psoriasis-like dermatitis. CONCLUSION TNF-α initiates psoriatic inflammation by increasing CXCL-1/8 in keratinocytes mediated by the axis of NF-κB-hsa-miR-27a-3p-galectin-3 pathway.
Collapse
Affiliation(s)
- Xiao-Nan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Hong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Rui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si-Yao Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Xian Lai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ling Ren
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Ting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi-Peng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo-Zhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang-Chun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
15
|
Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol 2023; 33:667-681. [PMID: 36737375 PMCID: PMC10363204 DOI: 10.1016/j.tcb.2023.01.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The study of extracellular vesicles (EVs) and nanoparticles (NPs) is rapidly expanding because recent discoveries have revealed a much greater complexity and diversity than was appreciated only a few years ago. New types of EVs and NPs have recently been described. Proteins and nucleic acids previously thought to be packaged in exosomes appear to be more enriched in different types of EVs and in two recently identified amembranous NPs, exomeres and supermeres. Thus, our understanding of the cell biology and intercellular communication facilitated by the release of EVs and NPs is in a state of flux. In this review, we describe the different types of EVs and NPs, highlight recent advances, and present major outstanding questions.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Abdelmohsen K, Herman AB, Carr AE, Henry‐Smith CA, Rossi M, Meng Q, Yang J, Tsitsipatis D, Bangura A, Munk R, Martindale JL, Nogueras‐Ortiz CJ, Hao J, Gong Y, Liu Y, Cui C, Hartnell LM, Price NL, Ferrucci L, Kapogiannis D, de Cabo R, Gorospe M. Survey of organ-derived small extracellular vesicles and particles (sEVPs) to identify selective protein markers in mouse serum. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e106. [PMID: 37744304 PMCID: PMC10512735 DOI: 10.1002/jex2.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/26/2023]
Abstract
Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA1), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs prepared from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Angelica E. Carr
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Charnae’ A. Henry‐Smith
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Qiong Meng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Alhassan Bangura
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | | | - Jon Hao
- Poochon ScientificFrederickMarylandUSA
| | - Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Chang‐Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Lisa M. Hartnell
- Translational Gerontology Branch, NIA IRPNIHBaltimoreMarylandUSA
| | - Nathan L. Price
- Translational Gerontology Branch, NIA IRPNIHBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology Branch, NIA IRPNIHBaltimoreMarylandUSA
| | | | - Rafael de Cabo
- Translational Gerontology Branch, NIA IRPNIHBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program (NIA IRP)National Institutes of Health (NIH)BaltimoreMarylandUSA
| |
Collapse
|
17
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
18
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
19
|
Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Coffey RJ. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat Protoc 2023; 18:1462-1487. [PMID: 36914899 PMCID: PMC10445291 DOI: 10.1038/s41596-023-00811-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/10/2023] [Indexed: 03/16/2023]
Abstract
There is an increasing appreciation for the heterogeneous nature of extracellular vesicles (EVs). In addition, two nonvesicular extracellular nanoparticles (NVEPs), exomeres and supermeres, have been discovered recently that are enriched in many cargo previously ascribed to EVs. The EV field has largely focused on EV isolation and characterization, while studies on NVEPs are limited. At this juncture, it is critically important to have robust and reliable methods to separate distinct populations of EVs and NVEPs to assign cargo to their correct carrier. Here, we provide a comprehensive step-by-step protocol for sequential isolation of large and small EVs, nonvesicular fractions, exomeres and supermeres from the same starting material. We describe in detail the use of differential ultracentrifugation, filtration, concentration and high-resolution density-gradient fractionation to obtain purified fractions of distinct populations of EVs and NVEPs. This protocol allows assignment and enrichment of a biomolecule of interest to its specific extracellular compartment. Compared to other isolation methods, our protocol has unique advantages, including high purity and reproducibility, with minimal expertise required. The protocol can be applied to purification of EVs and NVEPs from cell culture medium and human plasma and requires ~72 h to complete. Adoption of this protocol will help translational investigators identify potential circulating biomarkers and therapeutic targets for a host of human diseases and allow basic scientists to better understand EV and NVEP biogenesis and function. Overall, this protocol will allow those interested in isolating EVs and extracellular particles to advance scientific inquiry to answer outstanding questions in the field.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
20
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
21
|
Yu J, Ostowari A, Gonda A, Mashayekhi K, Dayyani F, Hughes CCW, Senthil M. Exosomes as a Source of Biomarkers for Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15041263. [PMID: 36831603 PMCID: PMC9954462 DOI: 10.3390/cancers15041263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Exosomes are small, lipid-bilayer bound extracellular vesicles of 40-160 nanometers in size that carry important information for intercellular communication. Exosomes are produced more by tumor cells than normal cells and carry tumor-specific content, such as DNA, RNA, and proteins, which have been implicated in tumorigenesis, tumor progression, and treatment response. Due to the critical role of exosomes in cancer development and progression, they can be exploited to develop specific biomarkers and therapeutic targets. Since exosomes are present in various biofluids, such as blood, saliva, urine, and peritoneal fluid, they are ideally suited to be developed as liquid biopsy tools for early diagnosis, molecular profiling, disease surveillance, and treatment response monitoring. In the past decade, numerous studies have been published about the functional significance of exosomes in a wide variety of cancers, with a particular focus on exosome-derived RNAs and proteins as biomarkers. In this review, utilizing human studies on exosomes, we highlight their potential as diagnostic, prognostic, and predictive biomarkers in gastrointestinal cancers.
Collapse
Affiliation(s)
- Jingjing Yu
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Arsha Ostowari
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Amber Gonda
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Kiarash Mashayekhi
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - Christopher C. W. Hughes
- Department of Molecular Biology & Biochemistry and Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Maheswari Senthil
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA 92868, USA
- Correspondence:
| |
Collapse
|
22
|
Sagini K, Urbanelli L, Buratta S, Emiliani C, Llorente A. Lipid Biomarkers in Liquid Biopsies: Novel Opportunities for Cancer Diagnosis. Pharmaceutics 2023; 15:pharmaceutics15020437. [PMID: 36839759 PMCID: PMC9966160 DOI: 10.3390/pharmaceutics15020437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Altered cellular metabolism is a well-established hallmark of cancer. Although most studies have focused on the metabolism of glucose and glutamine, the upregulation of lipid metabolism is also frequent in cells undergoing oncogenic transformation. In fact, cancer cells need to meet the enhanced demand of plasma membrane synthesis and energy production to support their proliferation. Moreover, lipids are precursors of signaling molecules, termed lipid mediators, which play a role in shaping the tumor microenvironment. Recent methodological advances in lipid analysis have prompted studies aimed at investigating the whole lipid content of a sample (lipidome) to unravel the complexity of lipid changes in cancer patient biofluids. This review focuses on the application of mass spectrometry-based lipidomics for the discovery of cancer biomarkers. Here, we have summarized the main lipid alteration in cancer patients' biofluids and uncovered their potential use for the early detection of the disease and treatment selection. We also discuss the advantages of using biofluid-derived extracellular vesicles as a platform for lipid biomarker discovery. These vesicles have a molecular signature that is a fingerprint of their originating cells. Hence, the analysis of their molecular cargo has emerged as a promising strategy for the identification of sensitive and specific biomarkers compared to the analysis of the unprocessed biofluid.
Collapse
Affiliation(s)
- Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: ; Tel.: +47-22-78-18-13
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- CEMIN (Center of Excellence for Innovative Nanostructured Material), University of Perugia, 06123 Perugia, Italy
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167 Oslo, Norway
| |
Collapse
|
23
|
Zhang Z, Liu X, Yang X, Jiang Y, Li A, Cong J, Li Y, Xie Q, Xu C, Liu D. Identification of faecal extracellular vesicles as novel biomarkers for the non-invasive diagnosis and prognosis of colorectal cancer. J Extracell Vesicles 2023; 12:e12300. [PMID: 36604402 DOI: 10.1002/jev2.12300] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies that is usually detected late in the clinic. The currently available diagnostic tools for CRC are either invasive or insensitive to early lesions due to the dearth of reliable biomarkers. In this study, we discovered that the extracellular vesicles (EVs) in the faeces of CRC patients can act as a potent biomarker for the non-invasive diagnosis and prognosis of CRC. This finding is based on the identification of two transmembrane proteins-CD147 and A33-on faeces-derived EVs (fEVs) that are intrinsically associated with CRC. The detection results show that the levels of CD147 and A33 on fEVs were upregulated in the CRC patients (n = 48), dramatically distinguishing them from the healthy donors (n = 16). The CD147/A33-enriched EVs offer a clinical sensitivity of 89%, much higher than that (40%) of carcinoembryonic antigen (CEA), a clinically-established serum biomarker for CRC diagnosis. In addition, the analysis of longitudinal faeces samples (n = 29) demonstrated that the CD147/A33-enriched fEVs can be utilized to track the prognosis of CRC. Due to the high compliance of faeces-based detection, the CD147/A33-enriched fEVs could serve as new-generation CRC biomarkers for large-scale, non-invasive CRC screening as well as real-time monitoring of patient outcomes during clinical interventions.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| | - Xuehui Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China.,College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, the 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Ying Jiang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| | - Jiying Cong
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin, China
| | - Qinjian Xie
- Gansu Corps Hospital of CAPF, Lanzhou, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
24
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
25
|
Preeclampsia and syncytiotrophoblast membrane extracellular vesicles (STB-EVs). Clin Sci (Lond) 2022; 136:1793-1807. [PMID: 36511102 DOI: 10.1042/cs20220149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a hypertensive complication of pregnancy that affects 2-8% of women worldwide and is one of the leading causes of maternal deaths and premature birth. PE can occur early in pregnancy (<34 weeks gestation) or late in pregnancy (>34 weeks gestation). Whilst the placenta is clearly implicated in early onset PE (EOPE), late onset PE (LOPE) is less clear with some believing the disease is entirely maternal whilst others believe that there is an interplay between maternal systems and the placenta. In both types of PE, the syncytiotrophoblast (STB), the layer of the placenta in direct contact with maternal blood, is stressed. In EOPE, the STB is oxidatively stressed in early pregnancy (leading to PE later in gestation- the two-stage model) whilst in LOPE the STB is stressed because of villous overcrowding and senescence later in pregnancy. It is this stress that perturbs maternal systems leading to the clinical manifestations of PE. Whilst some of the molecular species driving this stress have been identified, none completely explain the multisystem nature of PE. Syncytiotrophoblast membrane vesicles (STB-EVs) are a potential contributor to this multisystem disorder. STB-EVs are released into the maternal circulation in increasing amounts with advancing gestational age, and this release is further exacerbated with stress. There are good in vitro evidence that STB-EVs are taken up by macrophages and liver cells with additional evidence supporting endothelial cell uptake. STB-EV targeting remains in the early stages of discovery. In this review, we highlight the role of STB-EVs in PE. In relation to current research, we discuss different protocols for ex vivo isolation of STB-EVs, as well as specific issues involving tissue preparation, isolation (some of which may be unique to STB-EVs), and methods for their analysis. We suggest potential solutions for these challenges.
Collapse
|
26
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [PMID: 36308630 PMCID: PMC11802992 DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | - Parichehr Roozbahani Moghaddam
- Department of Molecular Genetics, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tehran, Mazandaran, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
27
|
Identification of Differentially Expressed microRNAs Associated with Ischemic Stroke by Integrated Bioinformatics Approaches. Int J Genomics 2022; 2022:9264555. [PMID: 36262825 PMCID: PMC9576445 DOI: 10.1155/2022/9264555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of disability and mortality worldwide. This study aims to find the crucial exosomal miRNAs associated with IS by using bioinformatics methods, reveal potential biomarkers for IS, and investigate the association between the identified biomarker and immune cell pattern in the peripheral blood of IS patients. In this study, 3 up-regulated miRNAs (hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p) miRNAs in the serum exosomes between IS patients and healthy controls from GEO database (GSE199942) and 25 down-regulated genes of peripheral blood mononuclear cells of IS patients from GSE22255 were obtained with the help of the R software. GO annotation and KEGG pathway enrichment analysis showed that the 25 down-regulated genes were associated with coenzyme metabolic process and were mainly enriched in the N-glycan biosynthesis pathway. Furthermore, we performed the LASSO algorithm to narrow down the above 25 intersected genes, and identified 8 key genes which had a good diagnostic value in discriminating IS patients from the healthy controls analyzed with ROC curve. CIBERSORT algorithm indicated that the abundance of M0 macrophages and resting mast cells was significantly lower than that of the control group. The spearman correlation analysis showed that STT3A was negatively correlated with the proportion of follicular helper T cells, activated NK cells and resting dendritic cells. Finally, GSE117064 showed that has-miR-16-5p was more advantageous for diagnosing stroke. In conclusion, hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p are identified as specific related exosomal miRNAs for IS patients. These genes may provide new targets for the early identification of IS.
Collapse
|
28
|
Long F, Tian L, Chai Z, Li J, Tang Y, Liu M. Identification of stage-associated exosome miRNAs in colorectal cancer by improved robust and corroborative approach embedded miRNA-target network. Front Med (Lausanne) 2022; 9:881788. [PMID: 36237545 PMCID: PMC9551196 DOI: 10.3389/fmed.2022.881788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common gastrointestinal tumor with high morbidity and mortality. At the molecular level, patients at different stages present considerable heterogeneity. Although the miRNA in exosome is an effective biomarker to reveal tumor progression, studies based on stage-associated exosome miRNA regulatory network analysis still lacking. This study aims to identify CRC stage-associated exosome miRNAs and reveal their potential function in tumor progression. Methods In this study, serum and cellular exosome miRNA expression microarrays associated with CRC were downloaded from GEO database. Stage-common (SC) and stage-specific (SS) differentially expressed miRNAs were extracted and their targets were identified based on 11 databases. Furthermore, miRNA SC and SS regulatory function networks were built based on the CRC phenotypic relevance of miRNA targets, and the corresponding transcription factors were identified. Concurrently, the potential stage-associated miRNAs were identified by receiver-operating characteristic (ROC) curve analysis, survival analysis, drug response analysis, ceRNA analysis, pathway analysis and a comprehensive investigation of 159 publications. Results Ten candidate stage-associated miRNAs were identified, with three SC (miR-146a-5p, miR-22-3p, miR-23b-3p) and seven SS (I: miR-301a-3p, miR-548i; IIIA: miR-23a-3p; IV: miR-194-3p, miR-33a-3p, miR-485-3p, miR-194-5p) miRNAs. Additionally, their targets were enriched in several vital cancer-associated pathways such as TGF-beta, p53, and hippo signaling pathways. Moreover, five key hotspot target genes (CCNA2, MAPK1, PTPRD, MET, and CDKN1A) were demonstrated to associated with better overall survival in CRC patients. Finally, miR-23b-3p, miR-301a-3p and miR-194-3p were validated being the most stably expressed stage-associated miRNAs in CRC serum exosomes, cell exosomes and tissues. Conclusions These CRC stage-associated exosome miRNAs aid to further mechanism research of tumor progression and provide support for better clinical management in patients with different stages.
Collapse
|
29
|
MicroRNA-23a-3p ameliorates acute kidney injury by targeting FKBP5 and NF-κB signaling in sepsis. Cytokine 2022; 155:155898. [DOI: 10.1016/j.cyto.2022.155898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
|
30
|
Tang BJ, Sun B, Chen L, Xiao J, Huang ST, Xu P. The Landscape of Exosome-Derived Non-Coding RNA in Leukemia. Front Pharmacol 2022; 13:912303. [PMID: 35784717 PMCID: PMC9240230 DOI: 10.3389/fphar.2022.912303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Leukemia is a group of life-threatening hematological malignancies which is currently incurable and often accompanied by drug resistance or disease relapse. Understanding the pathogenesis of leukemia and finding specific therapeutic targets and biomarkers is of great importance to improve the clinical efficacy of leukemia. Exosome-derived ncRNAs have been demonstrated as critical components of intercellular communication and function as key facilitators in the leukemia biological process. This review outlines the current investigations of exosomal ncRNAs (including miRNA, circRNA, and lncRNA) as important mediators of leukemia and potential therapeutic targets and biomarkers for leukemia treatment. Moreover, we generally analyze the prospects and challenges for exosomal ncRNAs from the aspects of research and clinical application.
Collapse
Affiliation(s)
- Bing-Jie Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jie Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shu-Ting Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Ping Xu,
| |
Collapse
|
31
|
Eddama MMR, Gurung R, Fragkos K, Lorgelly P, Cohen R, Loizidou M, Clapp L. The role of microvesicles as biomarkers in the screening of colorectal neoplasm. Cancer Med 2022; 11:2957-2968. [PMID: 35343093 PMCID: PMC9359869 DOI: 10.1002/cam4.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second cause of cancer death worldwide. The role of circulating microvesicles as a screening tool is a novel, yet effective approach that warrants prioritised research. Methods In a two‐gate diagnostic accuracy study, 35 patients with benign colorectal polyps (BCRP) (n = 16) and colorectal cancer (CRC) (n = 19) were compared to 17 age‐matched healthy controls. Total annexin‐V positive microvesicles and sub‐populations positive for selected biomarkers relevant to bowel neoplasm were evaluated in patients' plasma using flow cytometry. Statistical methods including factor analysis utilising two component factors were performed to obtain optimal diagnostic accuracy of microvesicles in identifying patients with colorectal neoplasms. Results Total plasma microvesicles, and sub‐populations positive for CD31, CD42a, CD31+/CD42a‐, EPHB2, ICAM and LGR5 (component factor‐1) were able to identify patients with BCRP and CRC with a receiver operator curve (AUC) accuracy of a 100% (95% CI: 100%–100%) and 95% (95% CI: 88%–100%), respectively. To identify patients with BCRP, a cut‐off point value of component factor‐1761 microvesicles/μl demonstrated a 100% sensitivity, specificity and negative predictive value (NPV) and a 93% positive predictive value (PPV). To identify patients with CRC, a cut‐off value of component factor‐1 3439 microvesicles/μl demonstrated a 100% sensitivity, specificity and NPV and a 65% PPV. CEA+ microvesicles sub‐population were significantly (p < 0.02) higher in CRC in comparison to BCRP. Conclusions Microvesicles as biomarkers for the early and accurate detection of CRC is a simple and effective tool that yields a potential breakthrough in clinical management.
Collapse
Affiliation(s)
- Mohammad M R Eddama
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.,Department of Surgery, University College London Hospital, London, UK
| | - Rijan Gurung
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Paula Lorgelly
- Department of Applied Health Research, Institute of Epidemiology and Health, University College London, London, UK
| | - Richard Cohen
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.,Department of Surgery, University College London Hospital, London, UK
| | - Marilena Loizidou
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Lucie Clapp
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
32
|
Blood Circulating CD133+ Extracellular Vesicles Predict Clinical Outcomes in Patients with Metastatic Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14051357. [PMID: 35267665 PMCID: PMC8909146 DOI: 10.3390/cancers14051357] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, we explored the prognostic and predictive value of blood circulating EVs expressing selected surface proteins in patients with metastatic colorectal cancer (mCRC). A recently patented flow cytometry protocol was used for the identification and subtyping of blood circulating EVs in a cohort of patients with stage IV colorectal cancer (n = 54) and in a cohort of healthy controls (n = 48). We observed an increased blood concentration of tumor-induced blood circulating EVs in the mCRC cohort as compared to healthy controls. Additionally, we show an intriguing link between circulating CD133+ EVs and poor clinical outcomes in patients with mCRC. This study provides novel insights about the potential impact of EVs as a relevant source of candidate biomarkers in mCRC. Abstract Colorectal cancer (CRC) is one of the most incident and lethal malignancies worldwide. Recent treatment advances prolonged survival in patients with metastatic colorectal cancer (mCRC). However, there are still few biomarkers to guide clinical management and treatment selection in mCRC. In this study, we applied an optimized flow cytometry protocol for EV identification, enumeration, and subtyping in blood samples of 54 patients with mCRC and 48 age and sex-matched healthy controls (HCs). The overall survival (OS) and overall response rate (ORR) were evaluated in mCRC patients enrolled and treated with a first line fluoropyrimidine-based regimen. Our findings show that patients with mCRC presented considerably higher blood concentrations of total EVs, as well as CD133+ and EPCAM+ EVs compared to HCs. Overall survival analysis revealed that increased blood concentrations of total EVs and CD133+ EVs before treatment were significantly associated with shorter OS in mCRC patients (p = 0.001; and p = 0.0001, respectively). In addition, we observed a correlation between high blood levels of CD133+ EVs at baseline and reduced ORR to first-line systemic therapy (p = 0.045). These findings may open exciting perspectives into the application of novel blood-based EV biomarkers for improved risk stratification and optimized treatment strategies in mCRC.
Collapse
|
33
|
Kim HJ, Rames MJ, Tassi Yunga S, Armstrong R, Morita M, Ngo ATP, McCarty OJT, Civitci F, Morgan TK, Ngo TTM. Irreversible alteration of extracellular vesicle and cell-free messenger RNA profiles in human plasma associated with blood processing and storage. Sci Rep 2022; 12:2099. [PMID: 35136102 PMCID: PMC8827089 DOI: 10.1038/s41598-022-06088-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
The discovery and utility of clinically relevant circulating biomarkers depend on standardized methods that minimize preanalytical errors. Despite growing interest in studying extracellular vesicles (EVs) and cell-free messenger RNA (cf-mRNA) as potential biomarkers, how blood processing and freeze/thaw impacts the profiles of these analytes in plasma was not thoroughly understood. We utilized flow cytometric analysis to examine the effect of differential centrifugation and a freeze/thaw cycle on EV profiles. Utilizing flow cytometry postacquisition analysis software (FCMpass) to calibrate light scattering and fluorescence, we revealed how differential centrifugation and post-freeze/thaw processing removes and retains EV subpopulations. Additionally, cf-mRNA levels measured by RT-qPCR profiles from a panel of housekeeping, platelet, and tissue-specific genes were preferentially affected by differential centrifugation and post-freeze/thaw processing. Critically, freezing plasma containing residual platelets yielded irreversible ex vivo generation of EV subpopulations and cf-mRNA transcripts, which were not removable by additional processing after freeze/thaw. Our findings suggest the importance of minimizing confounding variation attributed to plasma processing and platelet contamination.
Collapse
Affiliation(s)
- Hyun Ji Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Matthew J Rames
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Samuel Tassi Yunga
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Randall Armstrong
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA
| | - Mayu Morita
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Fehmi Civitci
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA
| | - Terry K Morgan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Thuy T M Ngo
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute (CEDAR), Oregon Health and Science University, 2720 SW Moody Ave, KR-CEDR, Portland, OR, 97201, USA.
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
34
|
Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Pharmacotherapy 2022; 148:112703. [PMID: 35149384 DOI: 10.1016/j.biopha.2022.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
MiR-16-5p, a member of the miR-16 family, has been reported to be abnormal expression in tumor tissues and blood of tumor patients, and also downregulated in most cancer cell lines. Aberrant expression of miR-16-5p promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and can also affect the treatment sensitivity, such as radiotherapy and chemotherapy. Generally, miR-16-5p plays an anti-tumor role and these diverse functions of miR-16-5p in tumors collectively indicate that miR-16-5p may become an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. Herein we review the role and utilization of miR-16-5p in malignant tumor in detail.
Collapse
Affiliation(s)
- Liuyi Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Sen Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Congcong Ren
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Shihua Liu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaopei Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
35
|
Yang Z, Lu S, Wang Y, Tang H, Wang B, Sun X, Qu J, Rao B. A Novel Defined Necroptosis-Related miRNAs Signature for Predicting the Prognosis of Colon Cancer. Int J Gen Med 2022; 15:555-565. [PMID: 35046713 PMCID: PMC8763259 DOI: 10.2147/ijgm.s349624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims at exploring the relationship between necroptosis-related miRNAs and colon cancer prognosis. Methods We downloaded the miRNA sequencing data from the TCGA, and eight differentially expressed necroptosis-related miRNAs were screened. Then, we used Cox regression analysis to establish a prediction model of necroptosis-related miRNA. Finally, the prognosis related miRNAs were used to predict the target genes, and functional analysis was used to explore the potential mechanism of these target genes. Results The miRNA-seq data of 444 COAD cases were downloaded from TCGA. We identified 8 differentially expressed miRNAs (has-miR-16-5p, has-miR-141-3p, has-miR-148a-3p, has-miR-425-5p, has-miR-7-5p, has-miR-223-3p, has-miR-200a-5p, and has-miR-500a-3p), then Cox analysis was performed for determining eight-miRNA signature prognostic biomarkers with obviously different OS. The area under the curve (AUC) of receiver operating characteristic (ROC) curve for predicting 1-, 3-, and 5-year survival were 0.663, 0.653 and 0.639, respectively. The multivariate analysis also implied that the risk score was an independent prognostic factor considering other confounding factors (HR = 1.847, 95% CI = 1.197–2.848, P = 0.006). According to the Kaplan–Meier analysis, the expression of hsa-miR-500a-3p (P = 0.003), hsa-miR-16-5p (P = 0.004) and hsa-miR-148a-3p (P = 0.035) significantly affected OS outcomes. We predicted the target genes of these three miRNAs and then screened 10 hub genes (CCND1, SMAD3, SMAD2, CDK1, TGFB2, CDC25A, CHEK1, VEGFA, CCNE1, WEE1). In addition, CHEK1 was associated with the survival prognosis. Conclusion Our study demonstrated that necroptosis is closely associated with colon cancer, and the model of eight necroptosis-related miRNAs are potentially useful prognostic biomarkers and therapeutic targets for colon cancer.
Collapse
Affiliation(s)
- Zhenpeng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Yuying Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Huazhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Xibo Sun
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Jinxiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
- Correspondence: Benqiang Rao Tel +86 13521237767 Email
| |
Collapse
|
36
|
Yang LP, Zheng JH, Zhang JK, Huang XH. Dysregulated miR-222-3p in plasma exosomes of preeclampsia patients and its In vitro effect on HTR8/SVneo extravillous trophoblast cells by targeting STMN1. Hum Exp Toxicol 2022; 41:9603271221138550. [PMID: 36475430 DOI: 10.1177/09603271221138550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the diagnostic efficiency of miR-222-3p in plasma exosomes (Exos) and plasma for preeclampsia (PE) and the effect of miR-222-3p targeting STMN1 in PE. METHODS MiR-222-3p levels in total plasma and plasma Exos were detected in PE patients and healthy controls. A bioinformatics database and dual-luciferase reporter assay were employed to verify the targeting relationship between miR-222-3p and STMN1. Trophoblast HTR-8/Svneo cells were transfected with miR-222-3p inhibitors with/without STMN1 shRNA, followed by MTT, wound healing and Transwell invasion assays. The mRNA and protein expressions were measured by qRT‒PCR and Western blotting, respectively. RESULTS MiR-222-3p levels in total plasma and plasma Exos were higher in PE patients than in healthy controls, particularly in severe PE patients. In addition, miR-222-3p levels in total plasma and plasma Exos from PE patients were positively correlated with diastolic and systolic blood pressure. The area under the curve (AUC) of miR-222-3p in total plasma for PE diagnostic efficiency was 0.798, with a sensitivity of 76.67% and specificity of 71.93%, while the AUC of miR-222-3p in plasma Exos was 0.708 (sensitivity: 61.67%; specificity: 78.95%). In vitro, miR-222-3p targeted STMN1 in HTR-8/Svneo cells. Low miR-222-3p expression reversed the inhibitory effect of STMN1 shRNA on the proliferation, invasion and migration of HTR/SVneo cells. CONCLUSION PE patients had increased miR-222-3p expression in total plasma and plasma Exos, which both have high diagnostic efficiency for PE. MiR-222-3p can target STMN1 to promote the proliferation, invasion and migration of HTR-8/Svneo cells and is a potential therapeutic target of PE.
Collapse
Affiliation(s)
- Li-Ping Yang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Hua Zheng
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing-Kun Zhang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Hua Huang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Chen CC, Chang PY, Chang YS, You JF, Chan EC, Chen JS, Tsai WS, Huang YL, Fan CW, Hsu HC, Chiang JM. MicroRNA-based signature for diagnosis and prognosis of colorectal cancer using residuum of fecal immunochemical test. Biomed J 2022; 46:144-153. [PMID: 35074584 PMCID: PMC10104956 DOI: 10.1016/j.bj.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still among the most lethal and prevalent malignancies in the world. Despite continuous efforts, the diagnosis and prognosis of CRC have never been satisfying, especially the non-invasive assays. METHODS Our study comprised three independent cohorts of 835 qualified stool samples. From 46 literature-identified miRNA candidates, four miRNA ratios were selected and developed into a miRNA-based signature after applied to the training and test sets. The clinical performances of this signature were further evaluated in the prospective cohorts. RESULTS Four miRNA ratios with significant alterations and the highest discriminating power between the CRC and control groups in the training set were successfully validated in the test set. In the training dataset, combining these four miRNA ratios using a logistic regression model improved the area under the curve value to 0.821 and obtained a sensitivity of 73.6% and specificity of 78.9%. This miRNA signature showed consistent performances in the other two sample cohorts, with the highest sensitivity of 85.7% in the prospective cohort. Additionally, the higher miRNA signature was associated with worse disease-free survival (hazard ratio = 2.27) and overall survival (hazard ratio = 1.83) of CRC patients. For fecal immunochemical test (FIT)-positive populations, the positive predictive value for CRC detection in miRNA-positive subjects was 3.43-fold higher in the prospective cohort, compared to FIT alone. CONCLUSION This stool miRNA signature is highly associated with poor outcome of CRC and can be added to FIT tests to help identify the most at-risk group to receive prompt colonoscopy examination.
Collapse
|
38
|
Kudelova E, Holubekova V, Grendar M, Kolkova Z, Samec M, Vanova B, Mikolajcik P, Smolar M, Kudela E, Laca L, Lasabova Z. Circulating miRNA expression over the course of colorectal cancer treatment. Oncol Lett 2021; 23:18. [PMID: 34868358 PMCID: PMC8630815 DOI: 10.3892/ol.2021.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third-most common cancer type in males and the second-most common cancer type in females, and has the second-highest overall mortality rate worldwide. Approximately 50% of patients in stage I–III develop metastases, mostly localized to the liver. All physiological conditions occurring in the organism are also reflected in the levels of circulating microRNAs (miRNAs/miRs) in patients. miRNAs are a class of small, non-coding, single-stranded RNAs consisting of 18–25 nucleotides, which have important roles in various cellular processes. The aim of the present study was to evaluate a panel of seven circulating miRNAs (miR-106a-5p, miR-210-5p, miR-155-5p, miR-21-5p, miR-103a-3p, miR-191-5p and miR-16-5p) as biomarkers for monitoring patients undergoing adjuvant treatment of CRC. Total RNA was extracted from the plasma of patients with CRC prior to surgery, in the early post-operative period (n=60) and 3 months after surgery (n=14). The levels of the selected circulating miRNAs were measured with the miRCURY LNA miRNA PCR system and fold changes were calculated using the standard ∆∆Cq method. DIANA-miRPath analysis was used to evaluate the role of significantly deregulated miRNAs. The results indicated significant upregulation of miR-155-5p, miR-21-5p and miR-191-5p, and downregulation of miR-16-5p directly after the surgery. In paired follow-up samples, the most significant upregulation was detected for miR-106a-5p and miR-16-5p, and the most significant downregulation was for miR-21-5p. Pathway analysis outlined the role of the differentially expressed miRNAs in cancer development, but the same pathways are also involved in wound healing and regeneration of intestinal epithelium. It may be suggested that these processes should also be considered in studies investigating sensitive and easily detectable circulating biomarkers for recurrence in patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marian Grendar
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zuzana Kolkova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Samec
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Barbora Vanova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| |
Collapse
|
39
|
Dou R, Liu K, Yang C, Zheng J, Shi D, Lin X, Wei C, Zhang C, Fang Y, Huang S, Song J, Wang S, Xiong B. EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin Transl Med 2021; 11:e595. [PMID: 34936736 PMCID: PMC8694332 DOI: 10.1002/ctm2.595] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metastasis is the main cause of death in colorectal cancer (CRC). Circulating tumour cells (CTCs) are regarded as the precursor cells of metastasis. The CTCs, which underwent epithelial-mesenchymal transition (EMT), are associated with metastasis and responsible for poor prognosis. EMT cancer cells modulate endothelial permeability in the invasive front and facilitate cancer cell intravasation, resulting in CTCs-mediated distant metastasis. Exosomes derived from cancer cells are key mediators of cancer-host intercommunication. However, the mechanism by which EMT-tumour cells-derived exosomes modulate vascular permeability and promote CTCs generation has remained unclear. METHODS Exosomes isolation and purification were conducted by ultra-centrifugation. Exosomal miRNA was identified by sequencing followed by quantitative PCR. In vitro co-culture assay experiments were conducted to evaluate the effect of exosomal miR-27b-3p on the permeability of blood vessel endothelium. Dual-luciferase reporter assay, chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) were performed to investigate the underlying mechanism by which miR-27b-3p is packaged into exosomes. A mouse model was established to determine the role of exosomal miR-27b-3p in blood vessel permeability modulation in vivo. RESULTS We found that EMT-CRC cells attenuate the blood vessel barrier by transferring miR-27b-3p to human umbilical vein endothelial cells (HUVECs) in exosomes. Mechanically, miR-27b-3p atteuated the expression of vascular endothelial cadherin (VE-Cad) and p120 at the post-transcriptional level by binding to 3'-untranslated region of VE-Cad and p120 directly. The packaging of miR-27b-3p into exosomes was induced by heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which activated by STAT3. Clinically, miR-27b-3p up-regulated in CRC tissues. Plasma exosomal miR-27b-3p was positively correlated with malignant progression and CTC count in CRC patients. Our study reveals a novel mechanism by which EMT-CRC cells promote metastasis, increasing blood vessel permeability and facilitating the generation of CTCs. CONCLUSION Exosomal miR-27b-3p secreted by EMT-CRC cells increases blood vessel permeability and facilitates the generation of CTCs. Exosomal miR-27b-3p may become a promising biomarker for CRC metastasis.
Collapse
|
40
|
Chen C, Wang J, Sun M, Li J, Wang HMD. Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery. Biomed Pharmacother 2021; 145:112416. [PMID: 34781147 DOI: 10.1016/j.biopha.2021.112416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.
Collapse
Affiliation(s)
- Chaoxiang Chen
- College of Food and Biological Engineering, Jimei University, China
| | - Jialin Wang
- College of Food and Biological Engineering, Jimei University, China
| | - Mengdi Sun
- College of Food and Biological Engineering, Jimei University, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
41
|
Min L, Wang B, Bao H, Li X, Zhao L, Meng J, Wang S. Advanced Nanotechnologies for Extracellular Vesicle-Based Liquid Biopsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102789. [PMID: 34463056 PMCID: PMC8529441 DOI: 10.1002/advs.202102789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a new source of biomarkers in liquid biopsy because of their wide presence in most body fluids and their ability to load cargoes from disease-related cells. Owing to the crucial role of EVs in disease diagnosis and treatment, significant efforts have been made to isolate, detect, and analyze EVs with high efficiency. A recent overview of advanced EV detection nanotechnologies is discussed here. First, several key challenges in EV-based liquid biopsies are introduced. Then, the related pivotal advances in nanotechnologies for EV isolation based on physical features, chemical affinity, and the combination of nanostructures and chemical affinity are summarized. Next, a summary of high-sensitivity sensors for EV detection and advanced approaches for single EV detection are provided. Later, EV analysis is introduced in practical clinical scenarios, and the application of machine learning in this field is highlighted. Finally, future opportunities for the development of next-generation nanotechnologies for EV detection are presented.
Collapse
Affiliation(s)
- Li Min
- Department of GastroenterologyBeijing Friendship HospitalCapital Medical UniversityNational Clinical Research Center for Digestive DiseasesBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing100050P. R. China
| | - Binshuai Wang
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Han Bao
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinran Li
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd.Beijing102206P. R. China
| | - Jingxin Meng
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
42
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
43
|
Extracellular Vesicles as a Novel Liquid Biopsy-Based Diagnosis for the Central Nervous System, Head and Neck, Lung, and Gastrointestinal Cancers: Current and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112792. [PMID: 34205183 PMCID: PMC8200014 DOI: 10.3390/cancers13112792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary To improve clinical outcomes, early diagnosis is mandatory in cancer patients. Several diagnostic approaches have been proposed, however, the main drawback relies on the invasive procedures required. Extracellular vesicles (EVs) are bilayer lipid membrane structures released by almost all cells and transferred to remote sites via the bloodstream. The observation that their cargo reflects the cell of origin has opened a new frontier for non-invasive biomarker discovery in oncology. Moreover, since EVs can be recovered from different body fluids, their impact as a Correctdiagnostic tool has gained particular interest. Hence, in the last decade, several studies using different biological fluids have been performed, showing the valuable contributions of EVs as tumour biomarkers, and their improved diagnostic power when combined with currently available tumour markers. In this review, the most relevant data on the diagnostic relevance of EVs, alone or in combination with the well-established tumour markers, are discussed. Abstract Early diagnosis, along with innovative treatment options, are crucial to increase the overall survival of cancer patients. In the last decade, extracellular vesicles (EVs) have gained great interest in biomarker discovery. EVs are bilayer lipid membrane limited structures, released by almost all cell types, including cancer cells. The EV cargo, which consists of RNAs, proteins, DNA, and lipids, directly mirrors the cells of origin. EVs can be recovered from several body fluids, including blood, cerebral spinal fluid (CSF), saliva, and Broncho-Alveolar Lavage Fluid (BALF), by non-invasive or minimally invasive approaches, and are therefore proposed as feasible cancer diagnostic tools. In this review, methodologies for EV isolation and characterization and their impact as diagnostics for the central nervous system, head and neck, lung, and gastrointestinal cancers are outlined. For each of these tumours, recent data on the potential clinical applications of the EV’s unique cargo, alone or in combination with currently available tumour biomarkers, have been deeply discussed.
Collapse
|
44
|
Wang D, Sang Y, Sun T, Kong P, Zhang L, Dai Y, Cao Y, Tao Z, Liu W. Emerging roles and mechanisms of microRNA‑222‑3p in human cancer (Review). Int J Oncol 2021; 58:20. [PMID: 33760107 PMCID: PMC7979259 DOI: 10.3892/ijo.2021.5200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small non‑coding RNAs that maintain the precise balance of various physiological processes through regulating the function of target mRNAs. Dysregulation of miRNAs is closely associated with various types of human cancer. miR‑222‑3p is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in tumor occurrence and progression. miR‑222‑3p in human biofluids, such as urine and plasma, may be a potential biomarker for the early diagnosis of tumors. In addition, miR‑222‑3p acts as a prognostic factor for the survival of patients with cancer. The present review first summarizes and discusses the role of miR‑222‑3p as a biomarker for diverse types of cancers, and then focuses on its essential roles in tumorigenesis, progression, metastasis and chemoresistance. Finally, the current understanding of the regulatory mechanisms of miR‑222‑3p at the molecular level are summarized. Overall, the current evidence highlights the crucial role of miR‑222‑3p in cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
45
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
46
|
Zhou R, Qiu P, Wang H, Yang H, Yang X, Ye M, Wang F, Zhao Q. Identification of microRNA-16-5p and microRNA-21-5p in feces as potential noninvasive biomarkers for inflammatory bowel disease. Aging (Albany NY) 2021; 13:4634-4646. [PMID: 33535181 PMCID: PMC7906140 DOI: 10.18632/aging.202428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic idiopathic gastrointestinal disease. Increasing evidence suggests that microRNAs (miRNAs) may participate in the pathophysiology of IBD. METHODS A miRCURY™ LNA Array and in situ hybridization were employed to screen for differentially expressed miRNAs (DEMs) in fecal specimens from 41 IBD patients (22 ulcerative colitis (UC), 19 Crohn's disease (CD)) and 23 healthy controls (HC). RT-qPCR was performed to confirm the findings. The DEMs target genes and corresponding biological functions were predicted by bioinformatics analysis. RESULTS Compared with HC, miR-16-5p in the feces was up-regulated both in UC and CD patients (p < 0.01), while miR-21-5p was up-regulated only in UC patients (p < 0.01). TargetScan 7.2, miRWalk, and miRDB were used to predict 216 public target genes of miR-16-5p and miR-21-5p, and six hub genes (PIK3R1, GRB2, SUZ12, NTRK2, Smurf2, and WWP1) were analyzed using the STRING database and Cytoscape. All the hub genes promote the occurrence and development of IBD-related colorectal cancer. CONCLUSIONS The elevated levels of miR-16-5p and miR-21-5p in feces of IBD patients have to guide significance for the noninvasive clinical diagnosis of IBD and have a warning effect on the occurrence of IBD-related colorectal cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Huijie Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Xueying Yang
- Department of Medical Records, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China
| | - Mingliang Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| |
Collapse
|
47
|
Han X, Li T, Li Y, Yang J, Chen S, Zhu X, Wang B, Cheng W, Wang L, Lu Z, Wu X, Jiang Y, Pan G, Zhao M. Exercise and Circulating Microparticles in Healthy Subjects. J Cardiovasc Transl Res 2021; 14:841-856. [PMID: 33495962 DOI: 10.1007/s12265-021-10100-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
This study aimed to explore the relationship between exercise and circulating microparticles (CMPs). PubMed, Web of Science, Embase, and the Cochrane Library databases were searched until August 13, 2020, using the terms "exercise" and "cell-derived microparticles." The Cochrane tool of risk of bias and the Methodological Index for Non-Randomized Studies were used to grade the studies. Twenty-six studies that met criteria were included in this review, including one before-after self-control study, 2 cohort studies, 4 randomized control trials, 5 case-control studies, and 14 descriptive studies. The studies were divided into a single bout and long-term exercise. The types of MPs contained endothelium-derived microparticles (EMPs), leukocyte-derived microparticles (LMPs), platelet-derived microparticles (PMPs), and erythrocyte-derived microparticles (ErMPs). This first systematic review found that the levels of CMPs continued to increase after a single bout of exercise in untrained subjects and were lower in trained subjects. PMPs expressed a transient increase after a single bout of exercise, and the proportion and duration of PMPs increment reduced in long-term exercise. Most studies showed a decline in LMPs in trained subjects after a single bout and long-term exercise, and variable changes were found in EMPs and ErMPs after exercise. A single bout of exercise drives the vessels exposed to high shear stress that promotes the formation of CMPs. However, the decline in CMPs in trained subjects may be attributed to the fact that they have a better ability to adapt to changes in hemodynamics and cellular function during exercise.
Collapse
Affiliation(s)
- Xiaowan Han
- Dongzhimen Hospital, Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tong Li
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yang Li
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingjing Yang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Shiqi Chen
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiangyu Zhu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Baofu Wang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Wenkun Cheng
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Lei Wang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Ziwen Lu
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiaoxiao Wu
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yangyang Jiang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Guozhong Pan
- Dongzhimen Hospital, Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| | - Mingjing Zhao
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| |
Collapse
|
48
|
Herichova I, Reis R, Hasakova K, Vician M. Downregulation of miR-30c-5p expression in colorectal cancer tissue is sex-dependent. Physiol Res 2020; 69:S479-S487. [PMID: 33476170 DOI: 10.33549/physiolres.934598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We report that decreased expression of miR-30c in tumor compared to adjacent tissue is sex-dependent in colorectal cancer (CRC) patients. High expression of miR-30c was associated with better survival in the whole cohort. When the cohort was split into male and female subcohorts, decreased miR-30c expression in tumor compared to adjacent tissue was observed only in males. Expression of miR-30c was decreased in CRC tumor tissue in male patients with nodes involvement compared to those without metastases in nodes and this difference was not observe in females. Next dependency of miR-30c expression on oestrogen receptor beta (ERbeta) mRNA levels in tumor was tested. In males with low expression of ERbeta, we observed a significant decrease in miR-30c levels in patients with nodes involvement compared to those without nodes involvement. This difference was not observed in males with high ERbeta mRNA levels and in females. Accordingly, males with low expression of ERbeta and high expression of miR-30c showed a better survival that those with low expression ERbeta and low expression of miR-30c. It is possible to conclude that whole cohort survival dependence on miR-30c is mostly generated by a subcohort of males with low expression of ERbeta mRNA in tumor tissue.
Collapse
Affiliation(s)
- I Herichova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
49
|
Wang S, Zhang Z, Gao Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:552-564. [PMID: 33510943 PMCID: PMC7810909 DOI: 10.1016/j.omtn.2020.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022]
Abstract
Cancer cell-derived extracellular vesicles (EVs) have been reported to promote the progression of colorectal cancer (CRC), although the regulatory mechanism remains uncharacterized. In this study, we investigated the role of microRNA-25 (miR-25)/sirtuin 6 (SIRT6) in the contribution of EVs derived from CRC cells to progression of CRC. In a co-culture system with EVs from HCT116 and NCM460 cells, the viability, migratory, and invasive properties of SW480 and SW620 cells were evaluated by cell counting kit-8 (CCK-8) and Transwell assays. Luciferase, chromatin immunoprecipitation (ChIP), and RNA immunoprecipitation (RIP) assays were conducted to verify the interaction among miR-25, SIRT6, lin-28 homologB (Lin28b), and neuropilin-1 (NRP-1). It was established that HCT116 cell-derived EVs promoted the malignant properties of SW480 cells and SW620 cells by delivering miR-25. SIRT6 was targeted by miR-25, whereas SIRT6 inhibited NRP-1 through downregulation of Lin28b. The tumor-bearing nude mouse experiments substantiated that HCT116 cell-derived EVs transferred miR-25 to facilitate tumor formation and metastasis by inhibiting SIRT6. In summary, our study clarifies the involvement of miR-25-targeted SIRT6 inhibition and SIRT6-mediated inhibition of the Lin28b/NRP-1 axis in CRC cell-derived EVs to CRC progression and metastasis.
Collapse
Affiliation(s)
- Shanchao Wang
- Department of Anorectal, Linyi People's Hospital, Linyi 276003, Shandong Province, P.R. China
| | - Zeyan Zhang
- Department of Anorectal, Linyi People's Hospital, Linyi 276003, Shandong Province, P.R. China
| | - Qianfu Gao
- Department of Anorectal, Linyi People's Hospital, Linyi 276003, Shandong Province, P.R. China
| |
Collapse
|
50
|
Guo S, Chen J, Chen F, Zeng Q, Liu WL, Zhang G. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut 2020; 70:gutjnl-2020-321187. [PMID: 33172926 DOI: 10.1136/gutjnl-2020-321187] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Exosomes released from tumour cells are packed with unique RNA and protein cargo, and they are emerging as an important mediator in the communication network that promotes tumour progression. The facultative intracellular bacterium Fusobacterium nucleatum (Fn) is an important colorectal cancer (CRC)-associated bacterium. To date, the function of exosomes from Fn-infected CRC cells has not been explored. DESIGN Exosomes were isolated by sequential differential centrifugation and verified by transmission electron microscopy, NanoSight analysis and Western blotting. Given that exosomes have been shown to transport miRNAs and proteins to alter cellular functions, we performed miRNA sequencing and proteome analysis of exosomes from Fn-infected and non-infected cells. The biological role and mechanism of exosomes from Fn-infected cells in CRC tumour growth and liver metastasis were determined in vitro and in vivo. RESULTS We demonstrated that exosomes delivered miR-1246/92b-3p/27a-3p and CXCL16/RhoA/IL-8 from Fn-infected cells into non-infected cells to increase cell migration ability in vitro and promote tumour metastasis in vivo. Finally, both circulating exosomal miR-1246/92b-3p/27a-3p and CXCL16 levels were closely associated with Fn abundance and tumour stage in patients with CRC. CONCLUSION This study suggests that Fn infection may stimulate tumour cells to generate miR-1246/92b-3p/27a-3p-rich and CXCL16/RhoA/IL-8 exosomes that are delivered to uninfected cells to promote prometastatic behaviours.
Collapse
Affiliation(s)
- Songhe Guo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiuyao Zeng
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wan-Li Liu
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|