1
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Baradaran Ghavami S, Pourhamzeh M, Farmani M, Keshavarz H, Shahrokh S, Shpichka A, Asadzadeh Aghdaei H, Hakemi-Vala M, Hossein-khannazer N, Timashev P, Vosough M. Cross-talk between immune system and microbiota in COVID-19. Expert Rev Gastroenterol Hepatol 2021; 15:1281-1294. [PMID: 34654347 PMCID: PMC8567289 DOI: 10.1080/17474124.2021.1991311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human gut microbiota plays a crucial role in providing protective responses against pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity of the immune system against respiratory viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. AREAS COVERED This narrative review mainly outlines emerging data on the mechanisms underlying the interactions between the immune system and intestinal microbial dysbiosis, which is caused by an imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm. EXPERT OPINION Microbiota-derived signals regulate the immune system and protect different tissues during severe viral respiratory infections. The GLA's equilibration could help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Hediye Keshavarz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Berezhnaya Y, Bikaeva I, Gachkovskaia A, Demidenko A, Klimenko N, Tyakht A, Volokh O, Alexeev D. Temporal dynamics of probiotic Lacticaseibacillus casei and rhamnosus abundance in a fermented dairy product evaluated using a combination of cultivation-dependent and -independent methods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Abstract
In recent years, the intestinal microbiota has been found to greatly influence a number of biological processes important for human health and longevity. Microbial composition changes easily in response to external factors, such as an unbalanced diet, lack of physical activity, and smoking. Probiotics are a key factor in maintaining the optimal composition of the intestinal microbiota. However, a number of important questions related to probiotics, such as indication for prescription, comparative efficacy of monostrain and multistrain probiotics, methods of delivery, and shelf life, remain unresolved. The aim of this review is to highlight existing issues regarding probiotic production and their prescription. The review presents the most recent findings regarding advantages and efficacy of monostrain and multistrain probiotics, preservation of probiotic strains in capsules and microcapsules, production of probiotics in the form of biofilms for improved efficacy and survival, and results of clinical studies evaluating the benefits of probiotics against different pathologies. We believe that this work will be of interest to physicians and researchers alike and will promote the development of new probiotics and ensuing regimens aimed at the treatment of various diseases.
Collapse
|
5
|
Ribeiro CFA, Silveira GGDOS, Cândido EDS, Cardoso MH, Espínola Carvalho CM, Franco OL. Effects of Antibiotic Treatment on Gut Microbiota and How to Overcome Its Negative Impacts on Human Health. ACS Infect Dis 2020; 6:2544-2559. [PMID: 32786282 DOI: 10.1021/acsinfecdis.0c00036] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need for new antimicrobial therapies is evident, especially to reduce antimicrobial resistance and minimize deleterious effects on gut microbiota. However, although diverse studies discuss the adverse effects of broad-spectrum antibiotics on the microbiome ecology, targeted interventions that could solve this problem have often been overlooked. The impact of antibiotics on gut microbiota homeostasis is alarming, compromising its microbial community and leading to changes in host health. Recent studies have shown that these impacts can be transient or permanent, causing irreversible damage to gut microbiota. The responses to and changes in the gut microbial community arising from antibiotic treatment are related to its duration, the number of doses, antibiotic class, host age, genetic susceptibility, and lifestyle. In contrast, each individual's native microbiota can also affect the response to treatment as well as respond differently to antibiotic treatment. In this context, the current challenge is to promote the growth of potentially beneficial microorganisms and to reduce the proportion of microorganisms that cause dysbiosis, thus contributing to an improvement in the patient's health. An essential requirement for the development of novel antibiotics will be personalized medicinal strategies that recognize a patient's intestinal and biochemical individuality. Thus, this Review will address a new perspective on antimicrobial therapies through pathogen-selective antibiotics that minimize the impacts on human health due to changes in the gut microbiota from the use of antibiotics.
Collapse
Affiliation(s)
- Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | | | - Elizabete de Souza Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| | - Cristiano Marcelo Espínola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Federal District 71966-700, Brazil
| |
Collapse
|
6
|
de Simone C. The Unregulated Probiotic Market. Clin Gastroenterol Hepatol 2019; 17:809-817. [PMID: 29378309 DOI: 10.1016/j.cgh.2018.01.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS This narrative review provides an overview of the current regulation of probiotics, with a focus on those used for the dietary management of medical conditions (Medical Foods). FINDINGS The probiotic market has grown rapidly, both for foods and supplements intended to enhance wellness in healthy individuals, and for preparations for the dietary management of disease. Regulation of probiotics varies between regions. Unless they make specific disease-related health claims, probiotics are regulated as food supplements and regulation is focused on the legitimacy of any claims, rather than efficacy, safety and quality. Many properties of probiotics are strain-specific, and safety and efficacy findings associated to specific formulations should not be generalized to other probiotic products. Manufacturing processes, conditions and ingredients are important determinants of product characteristics and changes to manufacturing are likely to give rise to a product not identical to the "original" in efficacy and safety if proper measures and controls are not taken. Current trademark law and the lack of stringent regulation of probiotic manufacturing mean that the trademark owner can commercialize any formulation under the same brand, even if significantly different from the original. These regulatory deficits may have serious consequences for patients where probiotics are used as part of clinical guideline-recommended management of serious conditions such as inflammatory bowel diseases, and may make doctors liable for prescribing a formulation not previously tested for safety and efficacy. CONCLUSIONS Current regulation of probiotics is inadequate to protect consumers and doctors, especially when probiotics are aimed at the dietary management of serious conditions.
Collapse
|
7
|
Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, Chifiriuc MC. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr 2019; 6:21. [PMID: 30931309 PMCID: PMC6424913 DOI: 10.3389/fnut.2019.00021] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract with its microbiota is a complex, open, and integrated ecosystem with a high environmental exposure. It is widely accepted that the healthy gut microbiotais essential for host homeostasis and immunostasis, harboring an enormous number and variety of microorganisms and genes tailored by hundreds of exogenous and intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and progression to a large spectrum of infectious and non-communicable diseases, including diabetes and obesity, two metabolic disorders that are showing an endemic trend nowadays. There is an urgent need to develop efficient strategies to prevent and treat metabolic disorders such as diabetes and obesity which are often associated with serious complications. In this paper, we give an overview on the implications of gut microbiota in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and predictive biomarkers with the final goal of reestablishing the healthy metabolic condition. The current research data regarding the precision/personalized nutrition suggest that dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as antibiotic treatment should be individually tailored to prevent chronic diseases based on the genetic background, food and beverage consumption, nutrient intake, microbiome, metabolome, and other omic profiles.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Gratiela G Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Natalia Cucu
- Fundeni Clinical Institute, Bucharest, Romania.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol 2018; 9:1830. [PMID: 30158926 PMCID: PMC6104162 DOI: 10.3389/fimmu.2018.01830] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, bringing to the host organism a dowry of cells and genes more numerous than its own. Among the different non-sterile cavities, the human gut harbors the most complex microbiota, with a strong impact on host homeostasis and immunostasis, being thus essential for maintaining the health condition. In this review, we outline the roles of gut microbiota in immunity, starting with the background information supporting the further presentation of the implications of gut microbiota dysbiosis in host susceptibility to infections, hypersensitivity reactions, autoimmunity, chronic inflammation, and cancer. The role of diet and antibiotics in the occurrence of dysbiosis and its pathological consequences, as well as the potential of probiotics to restore eubiosis is also discussed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
9
|
Alvarez-Calatayud G, Margolles A. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics. Future Microbiol 2016; 11:467-75. [DOI: 10.2217/fmb.15.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented.
Collapse
Affiliation(s)
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products. Dairy Research Institute of Asturias (IPLA-CSIC). Villaviciosa, Asturias, Spain
| |
Collapse
|
10
|
Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R. Biodiversity of Intestinal Lactic Acid Bacteria in the Healthy Population. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 932:1-64. [DOI: 10.1007/5584_2016_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Nami Y, Haghshenas B, Abdullah N, Barzegari A, Radiah D, Rosli R, Yari Khosroushahi A. Probiotics or antibiotics: future challenges in medicine. J Med Microbiol 2014; 64:137-146. [PMID: 25525206 DOI: 10.1099/jmm.0.078923-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic and environmental factors can affect the intestinal microbiome and microbial metabolome. Among these environmental factors, the consumption of antibiotics can significantly change the intestinal microbiome of individuals and consequently affect the corresponding metagenome. The term 'probiotics' is related to preventive medicine rather than therapeutic procedures and is, thus, considered the opposite of antibiotics. This review discusses the challenges between these opposing treatments in terms of the following points: (i) antibiotic resistance, the relationship between antibiotic consumption and microbiome diversity reduction, antibiotic effect on the metagenome, and disease associated with antibiotics; and (ii) probiotics as living drugs, probiotic effect on epigenetic alterations, and gut microbiome relevance to hygiene indulgence. The intestinal microbiome is more specific for individuals and may be affected by environmental alterations and the occurrence of diseases.
Collapse
Affiliation(s)
- Yousef Nami
- Institute of Biosciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Babak Haghshenas
- Institute of Biosciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norhafizah Abdullah
- Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dayang Radiah
- Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Institute of Biosciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Yari Khosroushahi
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci 2014; 6:189-94. [PMID: 25257882 PMCID: PMC5153589 DOI: 10.1038/ijos.2014.52] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Altered bowel flora is currently thought to play a role in a variety of disease conditions, and the use of Bifidobacterium spp. and Lactobacillus spp. as probiotics has been demonstrated to be health-promoting, even if the success of their administration depends on the applied bacterial strain(s) and the targeted disease. In the last few decades, specific probiotics have been shown to be effective in the treatment or the prevention of acute viral gastroenteritis, pediatric post-antibiotic-associated diarrhea, some pediatric allergic disorders, necrotizing enterocolitis in preterm infants, inflammatory bowel diseases and postsurgical pouchitis. The potential application of probiotics is continuously widening, with new evidence accumulating to support their effect on the prevention and treatment of other disease conditions, including several oral diseases, such as dental caries, periodontal diseases and oral malodor, as well as genitourinary and wound infections. Considering the increasingly widespread ability of pathogens to generate persistent biofilm-related infections, an even more attractive proposal is to administer probiotics to prevent or counteract biofilm development. The response of biofilm-based oral, intestinal, vaginal and wound infections to probiotics treatment will be reviewed here in light of the most recent results obtained in this field.
Collapse
|
13
|
Hussein L, Gouda M, Fouad M, Labib E, Bassyouni R, Mohammad M. Dietary Intervention with Yoghurt, Synbiotic Yogurt or Traditional Fermented Sobya: Bio-Potency among Male Adolescents Using Five Bio-Markers of Relevance to Colonic Metabolic Activities. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.512123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|