1
|
Michel F, Romero‐Romero S, Höcker B. Retracing the evolution of a modern periplasmic binding protein. Protein Sci 2023; 32:e4793. [PMID: 37788980 PMCID: PMC10601554 DOI: 10.1002/pro.4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.
Collapse
Affiliation(s)
- Florian Michel
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
2
|
Pathak K, Saikia R, Sarma H, Pathak MP, Das RJ, Gogoi U, Ahmad MZ, Das A, Wahab BAA. Nanotheranostics: application of nanosensors in diabetes management. J Diabetes Metab Disord 2023; 22:119-133. [PMID: 37255773 PMCID: PMC10225368 DOI: 10.1007/s40200-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Objectives The objective of the present study is to discuss the use of nanomaterials like nanosensors for diagnosing Diabetes and highlight their applications in the treatment of Diabetes. Methods Diabetes mellitus (D.M.) is a group of metabolic diseases characterized by hyperglycemia. Orally administered antidiabetic drugs like glibenclamide, glipalamide, and metformin can partially lower blood sugar levels, but long-term use causes kidney and liver damage. Recent breakthroughs in nanotheranostics have emerged as a powerful tool for diabetes treatment and diagnosis. Results Nanotheranostics is a rapidly developing area that can revolutionize diabetes diagnosis and treatment by combining therapy and imaging in a single probe, allowing for pancreas-specific drug and insulin delivery. Nanotheranostic in Diabetes research has facilitated the development of improved glucose monitoring and insulin administration modalities, which promise to improve the quality of life for people with Diabetes drastically. Further, nanomaterials like nanocarriers and unique functional nanomaterials used as nano theranostics tools for treating Diabetes will also be highlighted. Conclusion The nanosensors discussed in this review article will encourage researchers to develop innovative nanomaterials with novel functionalities and properties for diabetes detection and treatment.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Himangshu Sarma
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
- Sophisticated Analytical Instrument Facility (SAIF), Girijananda Chowdhury Institute of Pharmaceutical Science (GIPS), Girijananda ChowdhuryUniversity, Guwahati, Assam India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, Assam India
| | - Ratna Jyoti Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Basel A. Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J Funct Biomater 2021; 12:54. [PMID: 34698244 PMCID: PMC8544389 DOI: 10.3390/jfb12040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent complication during pregnancy. This complex disease is characterized by glucose intolerance and consequent hyperglycemia that begins or is first diagnosed in pregnancy, and affects almost 7% of pregnant women. Previous reports have shown that GDM is associated with increased pregnancy complications and might cause abnormal fetal development. At present, treatments are not suitable for the prevention and management of these patients. As an alternative therapeutic opportunity and a leading scientific technique, nanotechnology has helped enlighten the health of these affected women. Theranostic nanomaterials with unique properties and small sizes (at least <100 nm in one of their dimensions) have been recently engineered for clinics and pharmaceutics. Reducing materials to the nanoscale has successfully changed their properties and enabled them to uniquely interact with cell biomolecules. Several biosensing methods have been developed to monitor glucose levels in GDM patients. Moreover, cerium oxide nanoparticles (NPs), selenium NPs, polymeric NPs, and drug-loaded NPs loaded with therapeutic agents have been used for GDM treatment. Still, there are some challenges associated with the detection limits and toxicity of such nanomaterials. This preliminary review covers the aspects from a fast-developing field to generating nanomaterials and their applications in GDM diagnosis and treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 53898615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Noida 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
4
|
Electrochemiluminescence sensor based on cyclic peptides-recognition and Au nanoparticles assisted graphitic carbon nitride for glucose determination. Mikrochim Acta 2021; 188:151. [PMID: 33813618 DOI: 10.1007/s00604-021-04797-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
A glucose (Glu) sensor was designed by introducing synthetic cyclic peptides (CPs) as recognition receptors and Au nanoparticles assisted graphitic carbon nitride (AuNPs/g-C3N4) for electrochemiluminescence (ECL) enhancement. The synthetic CP receptor (cyclo-[-CNDNHCRDNDC-]) with natural active center of Glu binding protein can mimic the interactions between Glu and Glu binding protein to specifically capture Glu. The AuNPs were reduced on g-C3N4 and formed a new nanohybrid that can be applied as an ECL emitter. The AuNPs/g-C3N4 effectively ameliorated the ECL response of bare g-C3N4. The ECL enhancement mechanism was theoretically speculated through computer simulation. Glu quantification was conducted by recording ECL shifts induced by the binding of Glu to CPs. The linear detection range of the fabricated CPs-based ECL sensor was 1 to 100 mmol L-1, and the detection limit (LOD) was 0.57 nmol L-1 (S / N = 3). The CP-based ECL sensor also showed good specificity, repeatability, stability, and favorable recoveries in sample analysis. This work offer a promising analytical method for Glu assay in clinical diagnostics and bioprocess monitoring.
Collapse
|
5
|
The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021; 11:biom11040509. [PMID: 33808208 PMCID: PMC8067015 DOI: 10.3390/biom11040509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
Collapse
|
6
|
Otten J, Tenhaef N, Jansen RP, Döbber J, Jungbluth L, Noack S, Oldiges M, Wiechert W, Pohl M. A FRET-based biosensor for the quantification of glucose in culture supernatants of mL scale microbial cultivations. Microb Cell Fact 2019; 18:143. [PMID: 31434564 PMCID: PMC6704555 DOI: 10.1186/s12934-019-1193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In most microbial cultivations D-glucose is the main carbon and energy source. However, quantification of D-glucose especially in small scale is still challenging. Therefore, we developed a FRET-based glucose biosensor, which can be applied in microbioreactor-based cultivations. This sensor consists of a glucose binding protein sandwiched between two fluorescent proteins, constituting a FRET pair. Upon D-glucose binding the sensor undergoes a conformational change which is translated into a FRET-ratio change. RESULTS The selected sensor shows an apparent Kd below 1.5 mM D-glucose and a very high sensitivity of up to 70% FRET-ratio change between the unbound and the glucose-saturated state. The soluble sensor was successfully applied online to monitor the glucose concentration in an Escherichia coli culture. Additionally, this sensor was utilized in an at-line process for a Corynebacterium glutamicum culture as an example for a process with cell-specific background (e.g. autofluorescence) and medium-induced quenching. Immobilization of the sensor via HaloTag® enabled purification and covalent immobilization in one step and increased the stability during application, significantly. CONCLUSION A FRET-based glucose sensor was used to quantify D-glucose consumption in microtiter plate based cultivations. To the best of our knowledge, this is the first method reported for online quantification of D-glucose in microtiter plate based cultivations. In comparison to D-glucose analysis via an enzymatic assay and HPLC, the sensor performed equally well, but enabled much faster measurements, which allowed to speed up microbial strain development significantly.
Collapse
Affiliation(s)
- Julia Otten
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Niklas Tenhaef
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roman P. Jansen
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Johannes Döbber
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lisa Jungbluth
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Noack
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
7
|
Vergara R, Romero‐Romero S, Velázquez‐López I, Espinoza‐Pérez G, Rodríguez‐Hernández A, Pulido NO, Sosa‐Peinado A, Rodríguez‐Romero A, Fernández‐Velasco DA. The interplay of protein–ligand and water‐mediated interactions shape affinity and selectivity in the LAO binding protein. FEBS J 2019; 287:763-782. [DOI: 10.1111/febs.15019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Renan Vergara
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Sergio Romero‐Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Isabel Velázquez‐López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Georgina Espinoza‐Pérez
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Annia Rodríguez‐Hernández
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Nancy O. Pulido
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Alejandro Sosa‐Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Adela Rodríguez‐Romero
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
8
|
Siwach R, Pandey P, Chawla V, Dureja H. Role of Nanotechnology in Diabetic Management. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:28-37. [PMID: 30608045 DOI: 10.2174/1872210513666190104122032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM) has emerged as an epidemic that has affected millions of people worldwide in the last few decades. Nanotechnology is a discipline that is concerned with material characteristics at nanoscale and offers novel techniques for disease detection, management and prevention. OBJECTIVE Diabetes mellitus is an epidemic disease that has affected millions of people globally. Nanotechnology has greatly enhanced the health status by providing non-obtrusive techniques for the management and treatment of diabetic patients. METHOD In diabetes research, the nanotechnology has encouraged the advancement of novel glucose monitoring and several modalities for insulin delivery holding possibilities to enhance the personal satisfaction and life quality for diabetic patients. RESULT Nanoparticles hold a great potential in the areas of drug delivery and are explored as vehicles for orally administered insulin formulations. Glucose biosensors equipped with nanoscale materials such as Quantum Dots (QDs), Carbon Nanotubes (CNTs), Magnetic Nanoparticles (MNPs) etc. have shown greater sensitivity. Nanotechnology in diabetic research is heading towards the novel techniques which can provide continuous glucose monitoring offering accurate information and improving patient's compliance. CONCLUSION The present review addresses the different aspects of nanoparticles and recent patents related to diabetic management based on nanotechnology.
Collapse
Affiliation(s)
- Reena Siwach
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak-124001, India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
9
|
Open Conformation of the Escherichia coli Periplasmic Murein Tripeptide Binding Protein, MppA, at High Resolution. BIOLOGY 2018; 7:biology7020030. [PMID: 29783769 PMCID: PMC6022919 DOI: 10.3390/biology7020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
Periplasmic ligand-binding proteins (PBPs) bind ligands with a high affinity and specificity. They undergo a large conformational change upon ligand binding, and they have a robust protein fold. These physical features have made them ideal candidates for use in protein engineering projects to develop novel biosensors and signaling molecules. The Escherichia coli MppA (murein peptide permease A) PBP binds the murein tripeptide, l-alanyl-γ-d-glutamyl-meso-diaminopimelate, (l-Ala-γ-d-Glu-meso-Dap), which contains both a D-amino acid and a gamma linkage between two of the amino acids. We have solved a high-resolution X-ray crystal structure of E. coli MppA at 1.5 Å resolution in the unliganded, open conformation. Now, structures are available for this member of the PBP protein family in both the liganded/closed form and the unliganded/open form.
Collapse
|
10
|
Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. SENSORS 2018; 18:s18051440. [PMID: 29734744 PMCID: PMC5982147 DOI: 10.3390/s18051440] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Glucose sensing in diabetes diagnosis and therapy is of great importance due to the prevalence of diabetes in the world. Furthermore, glucose sensing is also critical in the food and drug industries. Sensing glucose has been accomplished through various strategies, such as electrochemical or optical methods. Novel transducers made with nanomaterials that integrate fluorescent techniques have allowed for the development of advanced glucose sensors with superior sensitivity and convenience. In this review, glucose sensing by fluorescent nanobiosensor systems is discussed. Firstly, typical fluorescence emitting/interacting nanomaterials utilized in various glucose assays are discussed. Secondly, strategies for integrating fluorescent nanomaterials and biological sensing elements are reviewed and discussed. In summary, this review highlights the applicability of fluorescent nanomaterials, which makes them ideal for glucose sensing. Insight on the future direction of fluorescent nanobiosensor systems is also provided.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
| | - Eugene Hwang
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
| |
Collapse
|
11
|
Banda-Vázquez J, Shanmugaratnam S, Rodríguez-Sotres R, Torres-Larios A, Höcker B, Sosa-Peinado A. Redesign of LAOBP to bind novel l-amino acid ligands. Protein Sci 2018. [PMID: 29524280 DOI: 10.1002/pro.3403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Computational protein design is still a challenge for advancing structure-function relationships. While recent advances in this field are promising, more information for genuine predictions is needed. Here, we discuss different approaches applied to install novel glutamine (Gln) binding into the Lysine/Arginine/Ornithine binding protein (LAOBP) from Salmonella typhimurium. We studied the ligand binding behavior of two mutants: a binding pocket grafting design based on a structural superposition of LAOBP to the Gln binding protein QBP from Escherichia coli and a design based on statistical coupled positions. The latter showed the ability to bind Gln even though the protein was not very stable. Comparison of both approaches highlighted a nonconservative shared point mutation between LAOBP_graft and LAOBP_sca. This context dependent L117K mutation in LAOBP turned out to be sufficient for introducing Gln binding, as confirmed by different experimental techniques. Moreover, the crystal structure of LAOBP_L117K in complex with its ligand is reported.
Collapse
Affiliation(s)
| | - Sooruban Shanmugaratnam
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Universität Bayreuth, Bayreuth, Germany
| | | | | | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Universität Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
12
|
Ko W, Kim S, Lee HS. Engineering a periplasmic binding protein for amino acid sensors with improved binding properties. Org Biomol Chem 2018; 15:8761-8769. [PMID: 28994436 DOI: 10.1039/c7ob02165h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periplasmic binding proteins (PBPs) are members of a widely distributed protein superfamily found in bacteria and archaea, and are involved in the cellular uptake of solutes. In this report, a leucine-binding PBP was engineered to detect l-Leu based on a fluorescence resonance energy transfer (FRET) change upon ligand binding. A fluorescent unnatural amino acid, l-(7-hydroxycoumarin-4-yl)ethylglycine (CouA), was genetically incorporated into the protein as a FRET donor, and a yellow fluorescent protein (YFP) was fused with its N-terminus as a FRET acceptor. When CouA was incorporated into position 178, the sensor protein showed a 2.5-fold increase in the FRET ratio. Protein engineering significantly improved its substrate specificity, showing minimal changes in the FRET ratio with the other 19 natural amino acids and d-Leu. Further modification increased the sensitivity of the sensor protein (14-fold) towards l-Leu, and it recognized l-Met as well with moderate binding affinity. Selected mutant sensors were used to measure concentrations of l-Leu in a biological sample (fetal bovine serum) and to determine the optical purity of Leu and Met. This FRET-based sensor design strategy allowed us to easily manipulate the natural receptor to improve its binding affinity and specificity and to recognize other natural molecules, which are not recognized by the wild-type receptor. The design strategy can be applied to other natural receptors, enabling engineering receptors that sense biochemically interesting molecules.
Collapse
Affiliation(s)
- Wooseok Ko
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea.
| | | | | |
Collapse
|
13
|
Preformulation Characterization, Stabilization, and Formulation Design for the Acrylodan-Labeled Glucose-Binding Protein SM4-AC. J Pharm Sci 2017; 106:1197-1210. [DOI: 10.1016/j.xphs.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022]
|
14
|
Nikolić D, Kovačev-Nikolić V. Dynamical persistence of active sites identified in maltose-binding protein. J Mol Model 2017; 23:167. [PMID: 28451879 DOI: 10.1007/s00894-017-3344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
This study identifies dynamical properties of maltose-binding protein (MBP) useful in unveiling active site residues susceptible to ligand binding. The described methodology has been previously used in support of novel topological techniques of persistent homology and statistical inference in complex, multi-scale, high-dimensional data often encountered in computational biophysics. Here we outline a computational protocol that is based on the anisotropic elastic network models of 14 all-atom three-dimensional protein structures. We introduce the notion of dynamical distance matrices as a measure of correlated interactions among 370 amino acid residues that constitute a single protein. The dynamical distance matrices serve as an input for a persistent homology suite of codes to further distinguish a small subset of residues with high affinity for ligand binding and allosteric activity. In addition, we show that ligand-free closed MBP structures require lower deformation energies than open MBP structures, which may be used in categorization of time-evolving molecular dynamics structures. Analysis of the most probable allosteric coupling pathways between active site residues and the protein exterior is also presented.
Collapse
Affiliation(s)
- Dragan Nikolić
- Department of Mechanical Engineering, University of Alberta and National Institute for Nanotechnology, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9, Canada.
| | | |
Collapse
|
15
|
Paul S, Banerjee S, Vogel HJ. Ligand binding specificity of the Escherichia coli periplasmic histidine binding protein, HisJ. Protein Sci 2016; 26:268-279. [PMID: 27865021 DOI: 10.1002/pro.3079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The HisJ protein from Escherichia coli and related Gram negative bacteria is the periplasmic component of a bacterial ATP-cassette (ABC) transporter system. Together these proteins form a transmembrane complex that can take up L-histidine from the environment and translocate it into the cytosol. We have studied the specificity of HisJ for binding L-His and many related naturally occurring compounds. Our data confirm that L-His is the preferred ligand, but that 1-methyl-L-His and 3-methyl-L-His can also bind, while the dipeptide carnosine binds weakly and D-histidine and the histidine degradation products, histamine, urocanic acid and imidazole do not bind. L-Arg, homo-L-Arg, and post-translationally modified methylated Arg-analogs also bind with reasonable avidity, with the exception of symmetric dimethylated-L-Arg. In contrast, L-Lys and L-Orn have considerably weaker interactions with HisJ and methylated and acetylated Lys variants show relatively poor binding. It was also observed that the carboxylate group of these amino acids and their variants was very important for proper recognition of the ligand. Taken together our results are a key step towards designing HisJ as a specific protein-based reagentless biosensor.
Collapse
Affiliation(s)
- Subrata Paul
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, T2N 1N4, Canada
| | - Sambuddha Banerjee
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
16
|
Unione L, Ortega G, Mallagaray A, Corzana F, Pérez-Castells J, Canales A, Jiménez-Barbero J, Millet O. Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations. ACS Chem Biol 2016; 11:2149-57. [PMID: 27219646 DOI: 10.1021/acschembio.6b00148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein dynamics related to function can nowadays be structurally well characterized (i.e., instances obtained by high resolution structures), but they are still ill-defined energetically, and the energy landscapes are only accessible computationally. This is the case for glucose-galactose binding protein (GGBP), where the crystal structures of the apo and holo states provide structural information for the domain rearrangement upon ligand binding, while the time scale and the energetic determinants for such concerted dynamics have been so far elusive. Here, we use GGBP as a paradigm to define a functional conformational landscape, both structurally and energetically, by using an innovative combination of paramagnetic NMR experiments and MD simulations. Anisotropic NMR parameters induced by self-alignment of paramagnetic metal ions was used to characterize the ensemble of conformations adopted by the protein in solution while the rate of interconversion between conformations was elucidated by long molecular dynamics simulation on two states of GGBP, the closed-liganded (holo_cl) and open-unloaded (apo_op) states. Our results demonstrate that, in its apo state, the protein coexists between open-like (68%) and closed-like (32%) conformations, with an exchange rate around 25 ns. Despite such conformational heterogeneity, the presence of the ligand is the ultimate driving force to unbalance the equilibrium toward the holo_cl form, in a mechanism largely governed by a conformational selection mechanism.
Collapse
Affiliation(s)
- Luca Unione
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
| | - Gabriel Ortega
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
| | - Alvaro Mallagaray
- Institute
of Chemistry, Center for Structural and Cell Biology in Medicine (CSCM), University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Francisco Corzana
- Departamento
de Química y Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Javier Pérez-Castells
- Facultad
de Farmacia, Dpto. Química y Bioquímica, Universidad San Pablo CEU, Urb. Montepríncipe, ctra., Boadilla km 5,300
Boadilla del Monte, 28668 Madrid, Spain
| | - Angeles Canales
- Department
of Química Orgánica I, Fac. C. C. Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
- Ikerbasque, Basque
Foundation
for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Departament of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia Spain
| | - Oscar Millet
- Molecular
Recognition and Host−Pathogen Interactions, CICbioGUNE, Bizkaia
Technology Park, Building 801 A, 48170 Derio, Spain
| |
Collapse
|
17
|
Pulido NO, Silva DA, Tellez LA, Pérez-Hernández G, García-Hernández E, Sosa-Peinado A, Fernández-Velasco DA. On the molecular basis of the high affinity binding of basic amino acids to LAOBP, a periplasmic binding protein fromSalmonella typhimurium. J Mol Recognit 2015; 28:108-16. [DOI: 10.1002/jmr.2434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Nancy O. Pulido
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| | - Daniel-Adriano Silva
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
- Biochemistry Department; University of Washington; Seattle WA USA
| | - Luis A. Tellez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
- Department of Psychiatry; Yale University School of Medicine; New Haven CT USA
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales; Universidad Autónoma Metropolitana- Cuajimalpa; México DF Mexico
| | - Enrique García-Hernández
- Instituto de Química; Universidad Nacional Autónoma de México; Circuito Exterior, Ciudad Universitaria México 04510 DF Mexico
| | - Alejandro Sosa-Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; México DF Mexico
| |
Collapse
|
18
|
Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee YK, Jaffa AA. Recent advances in application of biosensors in tissue engineering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:307519. [PMID: 25165697 PMCID: PMC4140114 DOI: 10.1155/2014/307519] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022]
Abstract
Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.
Collapse
Affiliation(s)
- Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon ; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Md Nurunnabi
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju 380-702, Republic of Korea
| | - Mahboob Morshed
- Tissue Engineering Centre, Faculty of Medicine, National University of Malaysia (Universiti Kebangsaan Malaysia), 56000 Cheras, Kuala Lumpur, Malaysia
| | - Arghya Paul
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Alessandro Polini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tapas Kuila
- Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Moustafa Al Hariri
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju 380-702, Republic of Korea
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
19
|
Ozyurt C, Evran S, Telefoncu A. Development of a novel fluorescent protein construct by genetically fusing green fluorescent protein to the N-terminal of aspartate dehydrogenase. Biotechnol Appl Biochem 2013; 60:399-404. [PMID: 24033594 DOI: 10.1002/bab.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2013] [Indexed: 11/11/2022]
Abstract
We developed a fluorescent protein construct by genetically fusing green fluorescent protein (GFP) to aspartate dehydrogenase from Thermotoga maritima. The fusion protein was cloned, heterologously expressed in Escherichia coli cells, and purified by Ni-chelate affinity chromatography. It was then introduced into a measurement cuvette to monitor its fluorescence signal. Aspartate dehydrogenase functioned as the biorecognition element, and aspartate-induced conformational change was converted to a fluorescence signal by GFP. The recombinant protein responded to l-aspartate (l-Asp) linearly within the concentration range of 1-50 mM, and it was capable of giving a fluorescence signal in 1 Min. Although a linear response was also observed for l-Glu, the fluorescence signal was 2.7 times lower than that observed for l-Asp. In the present study, we describe two novelties: development of a genetically encoded fluorescent protein construct for monitoring of l-Asp in vitro, and employment of aspartate dehydrogenase scaffold as a biorecognition element. A few genetically encoded amino-acid biosensors have been described in the literature, but to our knowledge, a protein has not been constructed solely for determination of l-Asp. Periplasmic ligand binding proteins offer high binding affinity in the micromolar range, and they are frequently used as biorecognition elements. Instead of choosing a periplasmic l-Asp binding protein, we attempted to use the substrate specificity of aspartate dehydrogenase enzyme.
Collapse
Affiliation(s)
- Canan Ozyurt
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey
| | | | | |
Collapse
|
20
|
Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens Bioelectron 2013; 47:12-25. [DOI: 10.1016/j.bios.2013.02.043] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
|
21
|
Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. SENSORS 2013; 13:5777-95. [PMID: 23648649 PMCID: PMC3690029 DOI: 10.3390/s130505777] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/10/2023]
Abstract
Whole-cell biosensors are a good alternative to enzyme-based biosensors since they offer the benefits of low cost and improved stability. In recent years, live cells have been employed as biosensors for a wide range of targets. In this review, we will focus on the use of microorganisms that are genetically modified with the desirable outputs in order to improve the biosensor performance. Different methodologies based on genetic/protein engineering and synthetic biology to construct microorganisms with the required signal outputs, sensitivity, and selectivity will be discussed.
Collapse
Affiliation(s)
- Miso Park
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; E-Mail:
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-302-831-6327; Fax: +1-302-831-1048
| |
Collapse
|
22
|
myo-inositol and D-ribose ligand discrimination in an ABC periplasmic binding protein. J Bacteriol 2013; 195:2379-88. [PMID: 23504019 DOI: 10.1128/jb.00116-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds D-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and D-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for D-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on D-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands.
Collapse
|
23
|
Clinical metabolomics: the next stage of clinical biochemistry. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10 Suppl 2:s19-24. [PMID: 22890264 DOI: 10.2450/2012.005s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Ortega G, Castaño D, Diercks T, Millet O. Carbohydrate Affinity for the Glucose–Galactose Binding Protein Is Regulated by Allosteric Domain Motions. J Am Chem Soc 2012; 134:19869-76. [DOI: 10.1021/ja3092938] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gabriel Ortega
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Building 800,
48160 Derio, Spain
| | - David Castaño
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Building 800,
48160 Derio, Spain
| | - Tammo Diercks
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Building 800,
48160 Derio, Spain
| | - Oscar Millet
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Building 800,
48160 Derio, Spain
| |
Collapse
|
25
|
Bucher D, Grant BJ, McCammon JA. Induced fit or conformational selection? The role of the semi-closed state in the maltose binding protein. Biochemistry 2011; 50:10530-9. [PMID: 22050600 PMCID: PMC3226325 DOI: 10.1021/bi201481a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
A full characterization of the thermodynamic forces underlying
ligand-associated conformational changes in proteins is essential
for understanding and manipulating diverse biological processes, including
transport, signaling, and enzymatic activity. Recent experiments on
the maltose binding protein (MBP) have provided valuable data about
the different conformational states implicated in the ligand recognition
process; however, a complete picture of the accessible pathways and
the associated changes in free energy remains elusive. Here we describe
results from advanced accelerated molecular dynamics (aMD) simulations,
coupled with adaptively biased force (ABF) and thermodynamic integration
(TI) free energy methods. The combination of approaches allows us
to track the ligand recognition process on the microsecond time scale
and provides a detailed characterization of the protein’s dynamic
and the relative energy of stable states. We find that an induced-fit
(IF) mechanism is most likely and that a mechanism involving both
a conformational selection (CS) step and an IF step is also possible.
The complete recognition process is best viewed as a “Pac Man”
type action where the ligand is initially localized to one domain
and naturally occurring hinge-bending vibrations in the protein are
able to assist the recognition process by increasing the chances of
a favorable encounter with side chains on the other domain, leading
to a population shift. This interpretation is consistent with experiments
and provides new insight into the complex recognition mechanism. The
methods employed here are able to describe IF and CS effects and provide
formally rigorous means of computing free energy changes. As such,
they are superior to conventional MD and flexible docking alone and
hold great promise for future development and applications to drug
discovery.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, United States.
| | | | | |
Collapse
|
26
|
Paek SH, Cho IH, Seo SM, Kim DH, Paek SH. Production of rapidly reversible antibody and its performance characterization as binder for continuous glucose monitoring. Analyst 2011; 136:4268-76. [PMID: 21879141 DOI: 10.1039/c1an15338b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To effectively control diabetes, a method to reliably measure glucose fluctuations in the body over given time periods needs to be developed. Current glucose monitoring systems depend on the substrate decomposition by an enzyme to detect the product; however, the enzyme activity significantly decays over time, which complicates analysis. In this study, we investigated an alternative method of glucose analysis based on antigen-antibody binding, which may be active over an extended period of time. To produce monoclonal antibodies, mice were immunized with molecular weight (M(W)) 10K dextran chemically conjugated with keyhole limpet hemocyanin. Since dextran contains glucose molecules polymerized via a 1,6-linkage, the produced antibodies had a binding selectivity that could discriminate biological glucose compounds with a 1,4-linkage. Three antibody clones with different affinities were screened using the M(W) 1K dextran-bovine serum albumin conjugates as the capture ligand. Among the antibodies tested, the antibody clone Glu 26 had the lowest affinity (K(A) = 3.56 × 10(6) M(-1)) and the most rapid dissociation (k(d) = 1.17 × 10(-2) s(-1)) with the polysaccharide immobilized on the solid surfaces. When glucose was added to the medium, the sensor signal was inversely proportional to the glucose concentration in a range between 10 and 1000 mg dL(-1), which covered the clinical range. Under the optimal conditions, the response time was about 3 min for association and 8 min for dissociation based on a 95% recovery of the final equilibrium.
Collapse
Affiliation(s)
- Sung-Ho Paek
- Program for Bio-Microsystem Technology, Korea University, 204C Specific Research Wing, Biotechnology Building (Green Campus), 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul, 136-701, Korea
| | | | | | | | | |
Collapse
|