1
|
Wang X, Li M, Yang Y, Shang X, Wang Y, Li Y. Clinical significance of inflammatory markers for evaluating disease severity of mixed-pathogen bloodstream infections of both Enterococcus spp. and Candida spp. Heliyon 2024; 10:e26873. [PMID: 38434384 PMCID: PMC10907801 DOI: 10.1016/j.heliyon.2024.e26873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Objective In recent decades, there has been a notable increase in the morbidity and mortality rates linked to bacteremia and candidemia. This study aimed to investigate the clinical significance of inflammatory markers in assessing the disease severity in critically ill patients suffering from mixed-bloodstream infections (BSIs) due to Enterococcus spp. and Candida spp. Methods In this retrospective research, patients diagnosed with BSIs who were admitted to the intensive care unit (ICU) during the period of January 2019 to December 2022 were analyzed. The patients were divided into two groups: a mixed-pathogen BSI group with both Enterococcus spp. and Candida spp., and a single-pathogen BSI group with only Enterococcus spp. The study examined the differences in inflammatory marker levels and disease severity, including Acute Physiology and Chronic Health Evaluation (APACHE) II scores, duration of ICU stay, and 30-day mortality, between the two groups. Furthermore, we sought to scrutinize the potential associations among these aforementioned parameters. Results The neutrophil-to-lymphocyte ratios (NLRs) and levels of plasma C-reactive protein (CRP), interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) in the mixed-pathogen BSI group were higher than those in the single-pathogen BSI group. Spearman's rank correlation analysis showed that NLRs and plasma CRP and IL-6 levels were positively correlated with disease severity in the mixed-pathogen BSI group. Further, the levels of plasma IL-8 and TNF-α were also positively correlated with ICU stay duration and 30-day mortality. In multivariate analysis, plasma CRP and IL-6 levels were independently associated with 30-day mortality. Conclusion Mixed-pathogen BSIs caused by Enterococcus spp. and Candida spp. may give rise to increased NLRs and plasma CRP, IL-6, IL-8, and TNF-α levels in comparison to BSI caused by Enterococcus spp. only, thus leading to elevated disease severity in critically ill patients.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Ming Li
- Department of Clinical Laboratory, The First Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yang Yang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xueyi Shang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yonggang Wang
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yan Li
- Department of Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| |
Collapse
|
2
|
Banik A, Anjum H, Habib H, Abony M, Begum A, Ahmed Z. Characterization of lactic acid bacteria isolated from street pickles of Dhaka, Bangladesh. Heliyon 2023; 9:e17508. [PMID: 37416662 PMCID: PMC10320110 DOI: 10.1016/j.heliyon.2023.e17508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Traditionally fermented pickles are a popular street food in Bangladesh famous for their unique flavors and health benefits. Pickles are often prepared by fermentation using lactic acid bacteria (LAB) that can act as probiotics. The study was aimed to isolate and characterize lactic acid bacteria from pickle samples collected from streets of Dhaka city, as well as assess the microbial quality of pickles for food safety. A total of 30 pickle samples of different kinds were collected from streets of Dhaka city. Isolation and identification were conducted using conventional cultural and biochemical tests, followed by molecular confirmation of identity. Antibiotic susceptibility of isolates was investigated against 7 antibiotics of different groups. Antimicrobial activity of LAB isolates was analyzed by well-diffusion assay and phenotypic enterocin activity assay. Physiological characterizations of LAB were performed to determine their tolerance to temperature, salt, pH, bile, carbohydrate fermentation pattern, proteolytic activity and biofilm formation. Fifty isolates were obtained from pickle samples, of which 18% was identified as LAB, including Enterococcus faecalis (6) and Enterococcus faecium (3). The rest included S. aureus (18), E. coli (11), Klebsiella spp. (5), Salmonella (3), Shigella (3) and Pseudomonas aeruginosa (1). Antibiotic resistance pattern revealed higher occurrence of resistance against azithromycin among the non-LAB isolates, but none of the LAB isolates were found to resist any of the antibiotics used. Antimicrobial activity of LAB isolates was not observed against the foodborne isolates. All LAB isolates fermented a wide range of carbohydrates and showed adequate tolerance to salt, pH, temperature and bile. Out of 9 isolates, 5 displayed proteolytic activity, and 6 were found as strong biofilm producer. These results suggest that although the LAB isolates from street pickles collected from Dhaka does not have antimicrobial activities, they still have potential to be used as probiotics. It also shows high occurrence of antibiotic resistant foodborne pathogens in pickles, indicating that consumption of such street food can be serious health hazard.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Hasnain Anjum
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Humayra Habib
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Maruf Abony
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Anowara Begum
- Department of Microbiology, Dhaka University, Bangladesh
| | - Zakaria Ahmed
- Bangladesh Jute Research Institute, Dhaka, Bangladesh
| |
Collapse
|
3
|
Determination of Enterococcus faecalis and Enterococcus faecium Antimicrobial Resistance and Virulence Factors and Their Association with Clinical and Demographic Factors in Kenya. J Pathog 2022; 2022:3129439. [PMID: 36405031 PMCID: PMC9668473 DOI: 10.1155/2022/3129439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Enterococci are clinically significant because of their increasing antibiotic resistance and their ability to cause severe infections due to an arsenal of virulence genes. Few studies in the developing world have examined virulence factors that may significantly impact patient outcomes. This study describes the antimicrobial resistance profiles and prevalence of five key Enterococcal virulence genes gelE, asa, cylA, esp, and hyl in forty-four clinical Enterococcus faecalis and E. faecium isolates in Kenya and their association with patients' demographic and clinical characteristics. Results All E. faecium isolates were obtained from hospital-acquired skin and soft tissue infections. While E. faecalis was associated with community-acquired urinary tract infections. All isolates were resistant to erythromycin, whereas 11/44 (27.5%), 25/44 (56.8%), 28/44 (63.6%), 37/44 (84.1%), 40/44 (90.0%), and 43/44 (97.5%) were susceptible to tetracycline, levofloxacin, gentamicin, ampicillin, nitrofurantoin, and teicoplanin, respectively. All isolates were susceptible to tigecycline, vancomycin, and linezolid. There was little difference in the antibiotic resistance profiles between E. faecalis and E. faecium. The prevalence of the virulence genes among the 44 isolates were 27 (61.4%) for gelE, 26 (59.1%) for asa1, 16 (36.3%) for esp, 11 (25.0%) for cylA, and 1 (2.3%) for hyl. 72.9% of E. faecalis isolates had multiple virulence genes compared to 57% of E. faecium isolates with no virulence genes. The hyl gene was only detected in E. faecium, while cylA and asa1 were only detected in E. faecalis. A significant correlation was observed between the presence of asa1 and esp virulence genes and tetracycline resistance (P=0.0305 and 0.0363, respectively). A significant correlation was also observed between the presence of virulence genes gelE and asa1 and nitrofurantoin resistance (P=0.0175 and 0.0225, respectively) and ampicillin resistance (P=0.0005 and 0.0008, respectively). Conclusion The study highlights the high levels of erythromycin resistance in E. faecalis and E. faecium, the demographic factors influencing the species distribution among patients, and the accumulation of multiple virulence genes in E. faecalis. The significant association of gelE, asa1, and esp virulence genes with drug resistance could explain the pathogenic success of E. faecalis and provides a guide for future studies.
Collapse
|
4
|
Roy K, Islam MS, Paul A, Ievy S, Talukder M, Sobur MA, Ballah FM, Khan MSR, Rahman MT. Molecular detection and antibiotyping of multi-drug resistant Enterococcus faecium from healthy broiler chickens in Bangladesh. Vet Med Sci 2022; 8:200-210. [PMID: 34786882 PMCID: PMC8788975 DOI: 10.1002/vms3.669] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Enterococcus faecium is a ubiquitously distributed member of the intestinal microbiota of both humans and animals. Antibiotic resistant E. faecium are a major public health concern. OBJECTIVES This study aimed to detect multi-drug resistant (MDR) E. faecium and their antibiotic resistance genes from broiler chickens in Bangladesh. METHODS A total of 100 faecal samples of healthy broilers were screened by conventional methods and polymerase chain reaction (PCR) to detect E. faecium and their resistance genes. Disk diffusion test was employed to determine antibiotic profiles. RESULTS By PCR, among 100 samples, 45% [95% confidence interval (CI): 35.62%-54.76%] were positive for E. faecium. Based on antibiogram, all the E. faecium isolates were found resistant to ampicillin, and frequently (93.33%-55.56%) resistant to ceftriaxone, cefotaxime, streptomycin, erythromycin, and imipenem; moderate to lower (26.67%-4.44%) resistance to tetracycline, ciprofloxacin, norfloxacin, chloramphenicol, gentamicin, and vancomycin. Interestingly, 80% (95% CI: 66.18%-89.10%) E. faecium isolates were MDR in nature. In addition, the indices of multiple antibiotic resistance (MAR) ranged from 0.08 to 0.83. By bivariate analysis, high positive significant correlations were observed between resistance profiles of erythromycin and imipenem, ciprofloxacin and norfloxacin, erythromycin and streptomycin, ceftriaxone and cefotaxime, tetracycline and chloramphenicol, and streptomycin and imipenem. Furthermore, the prevalence of resistance genes of E. faecium was 58.33% (tetA), 33.33% (tetB), 35.56% (blaTEM ), 60% (CITM), 13.33% (aadA1), and 12% (SHV). CONCLUSIONS To the best of our knowledge, this is the first study in Bangladesh to detect MDR and MAR E. faecium and their associated resistance genes. The detection of MDR and MAR E. faecium and their corresponding resistance genes from healthy broilers is of public health concern because of their potential to enter into the food chain.
Collapse
Affiliation(s)
- Krishna Roy
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Saiful Islam
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Anamika Paul
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Samina Ievy
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithun Talukder
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Abdus Sobur
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Fatimah Muhammad Ballah
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Shahidur Rahman Khan
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and HygieneFaculty of Veterinary ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| |
Collapse
|
5
|
Antibiotic susceptibility of human gut-derived facultative anaerobic bacteria is different under aerobic versus anaerobic test conditions. Microbes Infect 2021; 23:104847. [PMID: 34116163 DOI: 10.1016/j.micinf.2021.104847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022]
Abstract
Facultative anaerobes are the most common cause of infections in anoxic parts of the human body, including deep wound, vagina, periodontal pockets, gastrointestinal tract, genitourinary tract and lungs. Generally, antibiotic susceptibility tests (AST) for facultative anaerobes are performed under aerobic conditions due to ease of handling and rapid growth. However, variation in susceptibility of facultative anaerobes to antibiotics under aerobic and anaerobic conditions can lead to failure of antibiotic treatment. Our study evaluated the susceptibility of facultative anaerobic microorganisms to antibiotics during growth under anaerobic or aerobic conditions. We compared the resistance patterns of representatives from 15 bacterial genera isolated from the human-gastrointestinal tract against 22 different antibiotics from six classes under aerobic and anaerobic conditions. Preliminary results obtained by a disc diffusion method were verified using minimum inhibitory concentration (MIC) testing. The results demonstrated that 7-strains had a similar pattern of drug resistance under both conditions, while the remaining ten strains had significant differences in resistance patterns between aerobic and anaerobic conditions for at least one antibiotic. We conclude that successful antibiotic therapy for host-associated pathogens requires proper assessment of the oxygen condition of the growth environment and MIC testing of each pathogen under anaerobic and aerobic conditions.
Collapse
|
6
|
Blancas B, Lanzagorta MDL, Jiménez‐Garcia LF, Lara R, Molinari JL, Fernández AM. Study of the ultrastructure of Enterococcus faecalis and Streptococcus mutans incubated with salivary antimicrobial peptides. Clin Exp Dent Res 2021; 7:365-375. [PMID: 33951334 PMCID: PMC8204031 DOI: 10.1002/cre2.430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Enterococcus faecalis has been associated with root canal infections, while Streptococcus mutans has a central role in the etiology of dental caries. One of the main reasons of endodontic failure has been associated to the presence of E. faecalis and the formation of biofilms. S. mutans inhabits the oral cavity, specifically the dental plaque, which is a multispecies biofilm formed on the hard surfaces of the tooth. The biofilm formation is the main factor determining the pathogenicity of numerous bacteria. Natural antimicrobial peptides in the saliva protect against pathogenic bacteria and biofilms. The aim of this study was to assess the ultrastructural damage induced by salivary peptides in bacteria involved in biofilms has not been previously studied. MATERIAL AND METHODS Enterococcus faecalis and S. mutans incubated with cystatin C, chromogranin A, or histatin 5 were morphologically analyzed and counted. The ultrastructural damage was evaluated by transmission electron microscopy (TEM). RESULTS A decrease in bacterial numbers was observed after incubation with cystatin C, chromogranin A, or histatin 5, compared to the control group (P < 0.001). Ultrastructural damage in E. faecalis and S. mutans incubated with salivary peptides was found in the cell wall, plasma membrane with a decreased distance between the bilayers, a granular pattern in the cytoplasm, and pyknotic nucleoids. CONCLUSIONS This study demonstrated that salivary peptides exert antibacterial activity and induce morphological damage on E. faecalis and S. mutans. Knowledge on the ultrastructural damage inflicted by salivary antimicrobial peptides on two important bacteria causing dental caries and root canal infections could aid the design of new therapeutic approaches to facilitate the elimination of these bacteria.
Collapse
Affiliation(s)
- Blanca Blancas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaCol. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Luis Felipe Jiménez‐Garcia
- Departamento de Biología Celular, Facultad de CienciasUNAM, Col. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Reyna Lara
- Departamento de Biología Celular, Facultad de CienciasUNAM, Col. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - José Luis Molinari
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología Celular, Col. Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Ana María Fernández
- Departamento de Microbiología y Parasitología, Facultad de MedicinaCol. Universidad Nacional Autónoma de MéxicoMexico CityMexico
- Instituto de Estudios Avanzados en Odontologia Dr. Yury Kuttler, Maestria en EndodonciaMexico CityMexico
- Centro de Investigación en Ciencias de la Salud (CICSA), FCSUniversidad Anáhuac México Campus NorteHuixquilucanMexico
| |
Collapse
|
7
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
8
|
Kazi TA, Mitra S, Mukhopadhyay BC, Mandal S, Ranjan Biswas S. Characterization of a novel theta-type plasmid pSM409 of Enterococcus faecium RME isolated from raw milk. Gene 2021; 777:145459. [PMID: 33515726 DOI: 10.1016/j.gene.2021.145459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/02/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Enterococcal plasmids have generated renewed interest for their indispensable role in pathogenesis and dissemination of multidrug-resistance. Recently, a novel plasmid pSM409 (4303-bp, GC% = 33.6%), devoid of antibiotic-resistance and virulence genes, has been identified in Enterococcus faecium RME, isolated from raw milk by us. pSM409 contains six open reading frames encoding a replication initiator protein (RepB) and five accessory proteins: antitoxin epsilon, bacteriocin immunity protein, HsdS, and two hypothetical proteins. Comparative sequence analysis of pSM409 reveals a mosaic pattern of similarity with different loci obtained from different theta plasmids, which dictates the plasmid to be heterogeneous or mosaic, possibly due to recombination. The pSM409 comprised of a typical theta-type origin of replication with four and a half direct repeats (iterons) of 22 nucleotides. The pSM409-RepB shared 76-82% homology with the RepB of reported theta plasmids from different genera, with dissimilarities mostly in its DNA-binding and C-terminal domain. The RepB sequence-based phylogenetic tree revealed its distinct position relative to the reported ones. The RepB grouped in the same clade has identical DNA-binding domains and their cognate iterons, possibly due to their sequence-specific interaction to initiate plasmid replication. Comparative analysis of the pSM409-iteron reveals that the repeats markedly differed from their closest homologues. This clade-specific relationship provides a new concept of classifying theta plasmids. The theta-type replicon identified in pSM409 has been found to be unique to E. faecium RME, prompting us to further investigate its utility as a vector for genetic manipulation of enterococci for health and industry.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Suranjita Mitra
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
9
|
Hussein WE, Abdelhamid AG, Rocha-Mendoza D, García-Cano I, Yousef AE. Assessment of Safety and Probiotic Traits of Enterococcus durans OSY-EGY, Isolated From Egyptian Artisanal Cheese, Using Comparative Genomics and Phenotypic Analyses. Front Microbiol 2020; 11:608314. [PMID: 33362752 PMCID: PMC7759505 DOI: 10.3389/fmicb.2020.608314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
An Enterococcus durans strain, designated OSY-EGY, was previously isolated from artisanal cheese. In this work, comparative genomic and phenotypic analyses were utilized to assess the safety characteristics and probiotic traits of the bacterium. The comparative genomic analysis revealed that the strain is distantly related to potentially pathogenic Enterococcus spp. The genome was devoid of genes encoding acquired antibiotic resistance or marker virulence factors associated with Enterococcus spp. Phenotypically, the bacterium is susceptible to vancomycin, ampicillin, tetracycline, chloramphenicol, and aminoglycosides and does not have any hemolytic or gelatinase activity, or cytotoxic effect on Caco-2 cells. Altogether, these findings confirm the lack of hazardous traits in E. durans OSY-EGY. Mining E. durans OSY-EGY genome, for probiotic-related sequences, revealed genes associated with acid and bile salts tolerance, adhesion, competitiveness, antioxidant activitiy, antimicrobial activity, essential amino acids production, and vitamins biosynthesis. Phenotypically, E. durans OSY-EGY was tolerant to acidic pH (3.0), and presence of 0.3% bile salts. The bacterium showed adhesion capability to Caco-2 cells, cholesterol-lowering effect, DPPH scavenging activity, and antimicrobial activity against several Gram-positive pathogenic bacteria. Based on the current work, we propose that E. durans OSY-EGY is a potentially safe strain with desirable probiotic and antimicrobial traits. Thus, the investigated strain could be a promising candidate for several industrial applications.
Collapse
Affiliation(s)
- Walaa E. Hussein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology and Immunology, National Research Center, Giza, Egypt
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Diana Rocha-Mendoza
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Wang Y, Xiong Y, Wang Z, Zheng J, Xu G, Deng Q, Wen Z, Yu Z. Comparison of solithromycin with erythromycin in Enterococcus faecalis and Enterococcus faecium from China: antibacterial activity, clonality, resistance mechanism, and inhibition of biofilm formation. J Antibiot (Tokyo) 2020; 74:143-151. [PMID: 33077828 DOI: 10.1038/s41429-020-00374-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Solithromycin (SOL), a fourth-generation macrolide and ketolide, has been reported to have robust antibacterial activity against a wide spectrum of Gram-positive bacteria. However, the impact of SOL on planktonic growth and biofilm formation of clinical enterococcus isolates remains unclear. In this study, 276 Enterococcus faecalis isolates and 122 Enterococcus faecium were retrospectively collected from a tertiary hospital from China. SOL against clinical isolates of enterococci from China were evaluated the antimicrobial activity in comparison with erythromycin, and explore its relationship with the clonality, virulence genes and resistance mechanism of these isolates. Our data showed that the MICs of SOL against clinical E. faecalis and E. faecium isolates from China were ≤4 and ≤8 mg l-1, respectively. ST16 and ST179 were regarded as the risk factor to SOL resistance in E. faecalis. SOL could inhibit but not eradicate the biofilm formation of E. faecalis. The bactericidal effects of SOL against E. faecalis and E. faecium were demonstrated to be similar to linezolid and vancomycin using time-kill assays. In conclusion, SOL showed significantly enhanced antibacterial activity against clinical isolates of E. faecalis and E. faecium from China in comparison to erythromycin. Furthermore, SOL could inhibit the biofilm formation of E. faecalis and have the similar bactericidal ability as linezolid and vancomycin against both E. faecalis and E. faecium.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Zewen Wen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China.
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China.
| |
Collapse
|
11
|
Xiao B, Zou Z, Bhandari J, Zhang Y, Yan G. Exposure to diode laser (810nm) affects the bacterial adherence and biofilm formation in a E. faecalis biofilm model. Photodiagnosis Photodyn Ther 2020; 31:101772. [DOI: 10.1016/j.pdpdt.2020.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
12
|
The gut and feed residue microbiota changing during the rearing of Hermetia illucens larvae. Antonie van Leeuwenhoek 2020; 113:1323-1344. [PMID: 32638136 DOI: 10.1007/s10482-020-01443-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Larvae of Hermetia illucens, commonly known as black soldier fly, efficiently convert organic waste into nutrient-rich supplements for different applications. Here we performed a preliminary experiment to investigate the dynamics of the H. illucens gut microbiota and changes in the composition of the bacterial community in the residue of the larval feed during rearing. We furthermore quantified the presence of antibiotic resistance and disinfectant genes in the gut and feed microbiota during the rearing process to elucidate if rearing leads to a reduction, increase, and/or transfer of resistance genes from the feed to larvae and vice versa. We found that the gut and feed residue bacterial communities were distinct throughout the rearing process. The gut microbiome remained more stable compared to the feed residue microbiome varying in both bacterial abundance and community structure during rearing. Antibiotic-resistance genes were present in both, gut and feed residues, with a significant increase in pupae and residue samples taken at the end of the rearing process. Disinfectant-resistance genes were present in the feed residue and even increased during the rearing process but were not transferred to the gut microbiome. We conclude that H. illucens larvae have a stable gut microbiome that does not change significantly over the course of larval development, whereas bacterial communities in the feed residue are strongly affected by rearing. If the presence of antibiotics and disinfectants during rearing, can promote the spread of antibiotic/disinfectant-resistance genes among feed and larvae needs to be evaluated in further experiments.
Collapse
|
13
|
Galal FH, Seufi AM. Molecular characterization of cultivable bacteria associated with adult Schistocerca gregaria, using 16S rRNA. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1760537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fatma H. Galal
- Biology Department, College of Science, Jouf University, Sakaka, KSA
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - AlaaEddeen M. Seufi
- Department of Basic Sciences, Deanship of Common First Year, Jouf University, Sakaka, KSA
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Tian Y, Yu H, Wang Z. Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC Res Notes 2019; 12:27. [PMID: 30646924 PMCID: PMC6334421 DOI: 10.1186/s13104-019-4064-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE This study investigated the distribution of acquired antibiotic resistance genes in Enterococcus species isolated from clinical patients in Baotou, China. RESULT A total of 73 enterococca lisolates from clinical samples were collected from December 2016 to September 2017. Of the 73 enterococcal isolates, 36 (49.3%), 35 (47.9%), 1 (1.4%), and 1 (1.4%) were identified as E. faecium, E. faecalis, E. gallinarum, and E. raffinosus, respectively. The resistance rates of the enterococci to nitrofurantoin, tetracycline, gentamicin (high-level), ampicillin, ciprofloxacin and erythromycin were 24.7%, 49.3%, 50.7%, 54.8%, 74.0% and 89.0%, respectively. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2″)-Ia (64.9%) and aph(3')IIIa (64.9%). The most common erythromycin ribosome methylation gene was erm(B) (67.7%), followed by erm(A) (4.6%) and erm(C) (1.5%). The tetracycline resistance gene tetM was found to be present in 100.0% of the tetracycline-resistant strains of enterococci. Thus, E. faecium and E. faecalis were identified as the species of greatest clinical importance associated with hospital-acquired enterococcal infections in Baotou, China. The antimicrobial resistance genes aac(6')-Ie-aph(2″)-Ia, aph(3')IIIa, tetM, and erm(B) were significantly more prevalent among the enterococcal isolates. Therefore, action should be taken to monitor drug resistance and antimicrobial resistance genes to manage multi-drug-resistant enterococcal infections.
Collapse
Affiliation(s)
- Yingjie Tian
- The Second Affiliated Hospital, Baotou Medical College, 30 Hude Mulin Street, Baotou, 014030, China
| | - Hui Yu
- The Second Affiliated Hospital, Baotou Medical College, 30 Hude Mulin Street, Baotou, 014030, China
| | - Zhanli Wang
- The Second Affiliated Hospital, Baotou Medical College, 30 Hude Mulin Street, Baotou, 014030, China.
| |
Collapse
|
15
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019; 14:e0210218. [PMID: 30633757 PMCID: PMC6329490 DOI: 10.1371/journal.pone.0210218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R. Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K. Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sayed-Hassan A, Hermann R, Chidiac F, Truy E, Guevara N, Bailleux S, Deguine O, Baladi B, Gallois Y, Bozorg-Grayeli A, Lerosey Y, Godey B, Parietti-Winkler C, Pereira B, Mom T. Association of the Duration of Antibiotic Therapy With Major Surgical Site Infection in Cochlear Implantation. JAMA Otolaryngol Head Neck Surg 2019; 145:14-20. [PMID: 30325991 DOI: 10.1001/jamaoto.2018.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Infection after cochlear implantation is a rare but serious event that can lead to meningitis. There is no consensus on prevention of infection in these patients, and each center applies its own strategy. Objective To describe the rates of major surgical site infection for patients undergoing cochlear implantation who receive prolonged antibiotic treatment compared with those who receive a single perioperative dose of antibiotic prophylaxis. Design, Setting, and Participants Retrospective cohort study of patients who underwent cochlear implantation between January 1, 2011, and July 8, 2015, with a postoperative follow-up of 1 to 3 years. In this multicenter study at 8 French university centers, 1180 patients (509 children and 671 adults) who underwent cochlear implantation during this period were included. Interventions Prolonged antibiotic treatment vs single-dose antibiotic prophylaxis. Main Outcomes and Measures Major infection and explantation. Results Among 1180 patients (509 children [51.7% female] with a mean [SD] age of 4.6 [3.8] years and 671 adults [54.9% female] with a mean [SD] age of 54.8 [17.0] years), 12 patients (1.0%) developed a major infection, with 4 infections occurring in the prolonged antibiotic treatment group and 8 infections occurring in the antibiotic prophylaxis group (odds ratio, 2.45; 95% CI, 0.73-8.17). Children (9 of 509 [1.8%]) were more likely to develop infection than adults (3 of 671 [0.4%]). Among children, 4 infections occurred in the prolonged antibiotic group (n = 344), and 5 infections occurred in the antibiotic prophylaxis group (n = 158) (odds ratio, 2.78; 95% CI, 0.74-10.49). Among adults, 3 infections occurred in the antibiotic prophylaxis group (n = 365), whereas no infections occurred in the prolonged antibiotic treatment group (n = 290). Conclusions and Relevance After cochlear implantation, infection was rare, was less common among those who received prolonged antibiotic treatment, and was less likely to occur in adults than in children.
Collapse
Affiliation(s)
- Achraf Sayed-Hassan
- Otorhinolaryngology and Head and Neck Surgery, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Ruben Hermann
- Otorhinolaryngology, Head and Neck Surgery and Speech and Hearing, Edouard Herriot Hospital, Lyon, France
| | - Frédéric Chidiac
- Otorhinolaryngology, Head and Neck Surgery and Speech and Hearing, Edouard Herriot Hospital, Lyon, France
| | - Eric Truy
- Otorhinolaryngology, Head and Neck Surgery and Speech and Hearing, Edouard Herriot Hospital, Lyon, France
| | - Nicolas Guevara
- University Institute of the Head and Neck, Nice University Hospital, Nice, France
| | | | - Olivier Deguine
- Otorhinolaryngology, Otoneurology and Pediatric Otorhinolaryngology, Pierre-Paul Riquet Hospital, Toulouse University Hospital, Toulouse, France
| | - Blandine Baladi
- Otorhinolaryngology, Otoneurology and Pediatric Otorhinolaryngology, Pierre-Paul Riquet Hospital, Toulouse University Hospital, Toulouse, France
| | - Yohan Gallois
- Otorhinolaryngology, Otoneurology and Pediatric Otorhinolaryngology, Pierre-Paul Riquet Hospital, Toulouse University Hospital, Toulouse, France
| | - Alexis Bozorg-Grayeli
- Otorhinolaryngology and Head and Neck Surgery, Dijon Bourgogne University Hospital, Dijon, France
| | - Yannick Lerosey
- Otorhinolaryngology and Head and Neck Surgery, Rouen University Hospital, Rouen, France
| | - Benoit Godey
- Otorhinolaryngology and Oral and Maxillofacial Surgery, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | | | - Bruno Pereira
- Department of Statistics, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Thierry Mom
- Otorhinolaryngology and Head and Neck Surgery, Gabriel Montpied University Hospital, Clermont-Ferrand, France.,Laboratory of Biophysics of Sensory Handicaps, Unité Mixte de Recherche Institut National de la Santé et de la Recherche Médicale 1107, University of Clermont Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
17
|
Rehman MA, Yin X, Zaheer R, Goji N, Amoako KK, McAllister T, Pritchard J, Topp E, Diarra MS. Genotypes and Phenotypes of Enterococci Isolated From Broiler Chickens. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|