1
|
Gao R, Lin P, Yang W, Fang Z, Gao C, Cheng B, Fang J, Yu W. Bio-Inspired Nanodelivery Platform: Platelet Membrane-Cloaked Genistein Nanosystem for Targeted Lung Cancer Therapy. Int J Nanomedicine 2024; 19:10455-10478. [PMID: 39430311 PMCID: PMC11491070 DOI: 10.2147/ijn.s479438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Background Genistein (Gen), a natural polyphenolic compound, has emerged as a promising candidate for lung cancer treatment. However, the potential clinical application of Gen is limited due to its poor solubility, low bioavailability, and toxic side effects. To address these challenges, a biomimetic delivery platform with cell membranes derived from natural cells as carrier material was constructed. This innovative approach aims to facilitate targeted drug delivery and solve the problem of biocompatibility of synthetic materials. Methods First, the liposomes (LPs) loaded with Gen (LPs@Gen) was prepared using the ethanol injection method. Subsequently, PLTM-LPs@Gen was obtained through co-extrusion after mixing platelet membrane (PLTM) and LPs@Gen. Additionally, the biological and physicochemical properties of PLTM-LPs@Gen were investigated. Finally, the targeting ability, therapeutic efficacy, and safety of PLTM-LPs@Gen for lung cancer were evaluated using both a cell model and a tumor-bearing nude mouse model. Results The optimal preparation ratio for LPs@Gen was Gen: soybean lecithin: cholesterol: DSPE-PEG2000 (3:30:5:10, mass ratio), while the ideal fusion ratio of LPs@Gen and PLTM was 1:1. The particle size of PLTM-LPs@Gen was 108.33 ± 1.06 nm, and the encapsulation efficiency and drug loading were 94.29% and 3.09% respectively. Gen was released continuously and slowly from PLTM-LPs@Gen. Moreover, PLTM-LPs@Gen exhibited good stability within one week. The results of in vitro cellular uptake and in vivo distribution experiments indicated that the carrier material, PLTM-LPs, has the immune escape ability and tumor targeting ability. Consequently, it showed better therapeutic effects than free drugs and traditional LPs in vitro and in vivo tumor models. In addition, safety experiments demonstrated that PLTM-LPs@Gen possesses good biocompatibility. Conclusion Biomimetic nanomedicine provides a new strategy for the precision treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Chunxiao Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, People’s Republic of China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
2
|
Gao R, Lin P, Fang Z, Yang W, Gao W, Wang F, Pan X, Yu W. Cell-derived biomimetic nanoparticles for the targeted therapy of ALI/ARDS. Drug Deliv Transl Res 2024; 14:1432-1457. [PMID: 38117405 DOI: 10.1007/s13346-023-01494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common clinical critical diseases with high morbidity and mortality. Especially since the COVID-19 outbreak, the mortality rates of critically ill patients with ARDS can be as high as 60%. Therefore, this problem has become a matter of concern to respiratory critical care. To date, the main clinical measures for ALI/ARDS are mechanical ventilation and drug therapy. Although ventilation treatment reduces mortality, it increases the risk of hyperxemia, and drug treatment lacks safe and effective delivery methods. Therefore, novel therapeutic strategies for ALI/ARDS are urgently needed. Developments in nanotechnology have allowed the construction of a safe, efficient, precise, and controllable drug delivery system. However, problems still encounter in the treatment of ALI/ARDS, such as the toxicity, poor targeting ability, and immunogenicity of nanomaterials. Cell-derived biomimetic nanodelivery drug systems have the advantages of low toxicity, long circulation, high targeting, and high bioavailability and show great therapeutic promises for ALI/ARDS owing to their acquired cellular biological features and some functions. This paper reviews ALI/ARDS treatments based on cell membrane biomimetic technology and extracellular vesicle biomimetic technology, aiming to achieve a significant breakthrough in ALI/ARDS treatments.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Fangqian Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
3
|
Li Y, Fan R, Gao P, Hu CH. A Multifunctional Aggregation-Induced Emission Luminogen with pH-Response Detachable Connector for Lipid Droplet-Specific Imaging and Tracing. Molecules 2023; 28:7029. [PMID: 37894508 PMCID: PMC10608981 DOI: 10.3390/molecules28207029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Lipid droplets (LDs) targeting probes are important for investigating the biological functions of LDs. The interplay between LDs and some other organelles can help to further understand the biological functions of these organelles. However, it is still a challenge to design functional probes that can specifically target LDs and are responsive to some other organelles. Herein, a multifunctional aggregation-induced emission luminogen (AIEgen), namely the TPA-CN, was prepared by the simple aldimine condensation reaction for lipid droplet-specific imaging and tracing. TPA-CN can be sensitively responsive to the acid environment of lysosomes due to the pH-response detachable connector in TPA-CN. With the assistance of this characteristic, it can be concluded from the fluorescence imaging and co-localization analysis results that the internalization of TPA-CN and the targeting of LDs does not involve the lysosome and the lysosomal escape process. At last, the TPA-CN was successfully used for the high-sensitivity imaging of dynamic information of LDs.
Collapse
Affiliation(s)
- Yanjie Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Rui Fan
- Southwest University Hospital, Southwest University, Chongqing 400715, China;
| | - Pengfei Gao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substance, Chongqing 401121, China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substance, Chongqing 401121, China
| |
Collapse
|
4
|
Fang M, Wei W, Li R, Mao L, Wang Y, Guan Y, Chen Q, Shuai Z, Wei Y. The Variance of Photophysical Properties of Tetraphenylethene and Its Derivatives during Their Transitions from Dissolved States to Solid States. Polymers (Basel) 2022; 14:polym14142880. [PMID: 35890656 PMCID: PMC9320569 DOI: 10.3390/polym14142880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
The study of aggregation-induced emission luminogens (AIEgens) shows promising perspectives explored in lighting, optical sensors, and biological therapies. Due to their unique feature of intense emissions in aggregated solid states, it smoothly circumvents the weaknesses in fluorescent dyes, which include aggregation-caused quenching of emission and poor photobleaching character. However, our present knowledge of the AIE phenomena still cannot comprehensively explain the mechanism behind the substantially enhanced emission in their aggregated solid states. Herein, to systematically study the mechanism, the typical AIEgens tetraphenylethene (TPE) was chosen, to elucidate its photophysical properties, the TPE in THF/H2O binary solvents, TPE in THF solvents depending on concentration, and the following direct conversion from a dissolved state to a precipitated solid state were analyzed. Moreover, the TPE derivatives were also investigated to supply more evidence to better decipher the generally optical behaviors of TPE and its derivatives. For instance, the TPE derivative was homogeneously dispersed into tetraethyl orthosilicate to monitor the variance of photophysical properties during sol–gel processing. Consequently, TPE and its derivatives are hypothesized to abide by the anti-Kasha rule in dissolved states. In addition, the factors primarily influencing the nonlinear emission shifting of TPE and its derivatives are also discussed.
Collapse
Affiliation(s)
- Ming Fang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
- Correspondence: (M.F.); (Y.W.)
| | - Wenjuan Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Ruoxin Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Liucheng Mao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China; (Y.W.); (Z.S.)
| | - Yan Guan
- Analytical Instrumentation Center of Peking University, Center for Physicochemical Analysis and Measurement in ICCAS, Beijing 100871, China;
| | - Qiang Chen
- Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China;
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China; (Y.W.); (Z.S.)
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.W.); (R.L.); (L.M.)
- Correspondence: (M.F.); (Y.W.)
| |
Collapse
|
5
|
Chen L, Zhou Z, Hu C, Maitz MF, Yang L, Luo R, Wang Y. Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9845459. [PMID: 35118420 PMCID: PMC8791388 DOI: 10.34133/2022/9845459] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerosis, the principle cause of cardiovascular disease (CVD) worldwide, is mainly characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Atherogenesis is associated with the upregulation of CD47, a key antiphagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or "efferocytosis." Here, we have developed platelet membrane-coated mesoporous silicon nanoparticles (PMSN) as a drug delivery system to target atherosclerotic plaques with the delivery of an anti-CD47 antibody. Briefly, the cell membrane coat prolonged the circulation of the particles by evading the immune recognition and provided an affinity to plaques and atherosclerotic sites. The anti-CD47 antibody then normalized the clearance of diseased vascular tissue and further ameliorated atherosclerosis by blocking CD47. In an atherosclerosis model established in ApoE-/- mice, PMSN encapsulating anti-CD47 antibody delivery significantly promoted the efferocytosis of necrotic cells in plaques. Clearing the necrotic cells greatly reduced the atherosclerotic plaque area and stabilized the plaques reducing the risk of plaque rupture and advanced thrombosis. Overall, this study demonstrated the therapeutic advantages of PMSN encapsulating anti-CD47 antibodies for atherosclerosis therapy, which holds considerable promise as a new targeted drug delivery platform for efficient therapy of atherosclerosis.
Collapse
Affiliation(s)
- Liang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Zhongyi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Manfred F. Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Jiang Y, Sun J, Cao X, Liu H, Xiong C, Nie Z. Laser desorption/ionization mass spectrometry imaging-A new tool to see through nanoscale particles in biological systems. Chemistry 2021; 28:e202103710. [PMID: 34897857 DOI: 10.1002/chem.202103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Yuming Jiang
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Jie Sun
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Xiaohua Cao
- Jiujiang University, College of Chemical Engineering, CHINA
| | - Huihui Liu
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Caiqiao Xiong
- Institute of Chemistry Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, CHINA
| | - Zongxiu Nie
- Institute of Chemistry Chinese Academy of Sciences, Chinese Academy of Sciences, Zhongguancun St., 100190, Beijing, CHINA
| |
Collapse
|