1
|
Tang W, Sun Q, Wang ZL. Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology. Chem Rev 2023; 123:12105-12134. [PMID: 37871288 PMCID: PMC10636741 DOI: 10.1021/acs.chemrev.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.
Collapse
Affiliation(s)
- Wei Tang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Applied Nanotechnology, Jiaxing, Zhejiang 314031, P.R. China
| | - Qijun Sun
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Yonsei
Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
- Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
2
|
Zhu K, Phan PT, Sharma B, Davies J, Thai MT, Hoang TT, Nguyen CC, Ji A, Nicotra E, La HM, Vo-Doan TT, Phan HP, Lovell NH, Do TN. A Smart, Textile-Driven, Soft Exosuit for Spinal Assistance. SENSORS (BASEL, SWITZERLAND) 2023; 23:8329. [PMID: 37837159 PMCID: PMC10575006 DOI: 10.3390/s23198329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight. To detect strain on the spine and to control the smart textile automatically, a soft knitting sensor that utilizes fluid pressure as a sensing element is used. Based on the soft knitting hydraulic sensor, the robotic exosuit can also feature the ability of monitoring and rectifying human posture. The SARE is validated experimentally with human subjects (N = 4). Through wearing the SARE in stoop lifting, the peak electromyography (EMG) signals of the lumbar erector spinae are reduced by 22.8% ± 12 for lifting 5 kg weights and 27.1% ± 14 in empty-handed conditions. Moreover, the integrated EMG decreased by 34.7% ± 11.8 for lifting 5 kg weights and 36% ± 13.3 in empty-handed conditions. In summary, the artificial muscle wearable device represents an anatomical solution to reduce the risk of muscle strain, metabolic energy cost and back pain associated with repetitive lifting tasks.
Collapse
Affiliation(s)
- Kefan Zhu
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Bibhu Sharma
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - James Davies
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
- College of Engineering and Computer Science, VinUniversity, Hanoi 100000, Vietnam
| | - Trung Thien Hoang
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Adrienne Ji
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Emanuele Nicotra
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
| | - Hung Manh La
- Advanced Robotics and Automation Lab, Computer Science and Engineering, University of Nevada, Reno, NV 89512, USA;
| | - Tat Thang Vo-Doan
- School of Mechanical & Mining Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia;
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia; (K.Z.); (B.S.); (J.D.); (M.T.T.); (T.T.H.); (C.C.N.); (A.J.); (E.N.); (N.H.L.)
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Shan C, Li K, Cheng Y, Hu C. Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators. NANO-MICRO LETTERS 2023; 15:127. [PMID: 37209262 PMCID: PMC10200001 DOI: 10.1007/s40820-023-01115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
As hundreds of millions of distributed devices appear in every corner of our lives for information collection and transmission in big data era, the biggest challenge is the energy supply for these devices and the signal transmission of sensors. Triboelectric nanogenerator (TENG) as a new energy technology meets the increasing demand of today's distributed energy supply due to its ability to convert the ambient mechanical energy into electric energy. Meanwhile, TENG can also be used as a sensing system. Direct current triboelectric nanogenerator (DC-TENG) can directly supply power to electronic devices without additional rectification. It has been one of the most important developments of TENG in recent years. Herein, we review recent progress in the novel structure designs, working mechanism and corresponding method to improve the output performance for DC-TENGs from the aspect of mechanical rectifier, tribovoltaic effect, phase control, mechanical delay switch and air-discharge. The basic theory of each mode, key merits and potential development are discussed in detail. At last, we provide a guideline for future challenges of DC-TENGs, and a strategy for improving the output performance for commercial applications.
Collapse
Affiliation(s)
- Chuncai Shan
- School of Physics, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Kaixian Li
- School of Physics, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuntao Cheng
- School of Energy and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Chenguo Hu
- School of Physics, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
4
|
Deng M, Ren Z, Zhang H, Li Z, Xue C, Wang J, Zhang D, Yang H, Wang X, Li J. Unamplified and Real-Time Label-Free miRNA-21 Detection Using Solution-Gated Graphene Transistors in Prostate Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205886. [PMID: 36480308 PMCID: PMC9896035 DOI: 10.1002/advs.202205886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The incidence of prostate cancer (PCa) in men globally increases as the standard of living improves. Blood serum biomarker prostate-specific antigen (PSA) detection is the gold standard assay that do not meet the requirements of early detection. Herein, a solution-gated graphene transistor (SGGT) biosensor for the ultrasensitive and rapid quantification detection of the early prostate cancer-relevant biomarker, miRNA-21 is reported. The designed single-stranded DNA (ssDNA) probes immobilized on the Au gate can hybridize effectively with the miRNA-21 molecules targets and induce the Dirac voltage shifts of SGGT transfer curves. The limit of detection (LOD) of the sensor can reach 10-20 M without amplification and any chemical or biological labeling. The detection linear range is from 10-20 to 10-12 M. The sensor can realize real-time detection of the miRNA-21 molecules in less than 5 min and can well distinguish one-mismatched miRNA-21 molecule. The blood serum samples from the patients without RNA extraction and amplification are measured. The results demonstrated that the biosensor can well distinguish the cancer patients from the control group and has higher sensitivity (100%) than PSA detection (58.3%). Contrastingly, it can be found that the PSA level is not directly related to PCa.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Chenglong Xue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Dan Zhang
- School of Computer Science and Information EngineeringHubei UniversityWuhan430062P. R. China
| | - Huan Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| |
Collapse
|
5
|
Xu YT, Yuan C, Zhou BY, Li Z, Hu J, Lin P, Zhao WW, Chen HY, Xu JJ. Silicon solar cell-enabled organic photoelectrochemical transistor optoelectronics. SCIENCE CHINA MATERIALS 2023; 66:1861-1869. [PMID: 36685049 PMCID: PMC9838416 DOI: 10.1007/s40843-022-2295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/21/2022] [Indexed: 05/20/2023]
Abstract
Organic electrochemical transistors (OECTs) have been increasingly explored for innovative electronic devices. However, they inherently demand two power suppliers, which is unfavorable for the utilization of portable and wearable systems with strict energy requirements. Herein, by assembling a monocrystalline silicon solar cell into the OECT circuit with light as fuel, we demonstrated the possibility of a self-powered and light-modulated operation of organic photoelectrochemical transistor (OPECT) optoelectronics. Exemplified by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based depletion-mode and accumulation-mode OECTs, different light-addressable configurations were constructed, and the corresponding characteristics were systematically studied and compared. Different device behaviors with distinct characteristics could be achieved with the appropriate usage of light stimulation. Toward applications, optologics were designed with various parameters depending on the incident irradiance. Light-controlled OPECT unipolar inverters were further demonstrated and optimized with respect to the power source and resistance. This work features new OPECT optoelectronics combined with proper flexible substrates and solar cells for potential applications in portable and wearable devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40843-022-2295-8.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Bing-Yu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| |
Collapse
|
6
|
Cao X, Xiong Y, Sun J, Xie X, Sun Q, Wang ZL. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. NANO-MICRO LETTERS 2022; 15:14. [PMID: 36538115 PMCID: PMC9768108 DOI: 10.1007/s40820-022-00981-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 06/02/2023]
Abstract
In the era of 5G and the Internet of things (IoTs), various human-computer interaction systems based on the integration of triboelectric nanogenerators (TENGs) and IoTs technologies demonstrate the feasibility of sustainable and self-powered functional systems. The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing, which have greatly changed the way of human production and daily life. This review mainly introduced the TENG applications in multidiscipline scenarios of IoTs, including smart agriculture, smart industry, smart city, emergency monitoring, and machine learning-assisted artificial intelligence applications. The challenges and future research directions of TENG toward IoTs have also been proposed. The extensive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.
Collapse
Affiliation(s)
- Xiaole Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yao Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jia Sun
- School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China
| | - Xiaoyin Xie
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, People's Republic of China.
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Shandong Zhongke Naneng Energy Technology Co., Ltd., Dongying, 7061, People's Republic of China.
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Wei Y, Liu W, Yu J, Li Y, Wang Y, Huo Z, Cheng L, Feng Z, Sun J, Sun Q, Wang ZL. Triboelectric Potential Powered High-Performance Organic Transistor Array. ACS NANO 2022; 16:19199-19209. [PMID: 36354955 DOI: 10.1021/acsnano.2c08420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triboelectric potential gated transistors have inspired various applications toward mechanical behavior controlled logic circuits, multifunctional sensors, artificial sensory neurons, etc. Their rapid development urgently calls for high-performance devices and corresponding figure of merits to standardize the tribotronic gating properties. Organic semiconductors paired with solution processability promise low-cost manufacture of high-performance tribotronic transistor devices/arrays. Here, we demonstrate a record high-performance tribotronic transistor array composed of an integrated triboelectric nanogenerator (TENG) and a large-area device array of C8-BTBT-PS transistors. The working mechanism of effective triboelectric potential gating is elaborately explained from the aspect of conjugated energy bands of the contact-electrification mediums and organic semiconductors. Driven by the triboelectric potential, the tribotronic transistor shows superior properties of record high current on/off ratios (>108), a steep subthreshold swing (29.89 μm/dec), high stability, and excellent reproducibility. Moreover, tribotronic logic devices modulated by mechanical displacement have also been demonstrated with good stability and a high gain of 1260 V/mm. The demonstrated large-area tribotronic transistor array of organic semiconductor exhibits record high performance and offers an effective R&D platform for mechano-driven electronic terminals, interactive intelligent system, artificial robotic skin, etc.
Collapse
Affiliation(s)
- Yichen Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wanrong Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yonghai Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liuqi Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Zhenyu Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jia Sun
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Shandong Zhongke Naneng Energy Technology Co., Ltd., Dongying, 257061, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| |
Collapse
|