1
|
More S, Bonnereau J, Wouters D, Spotbeen X, Karras P, Rizzollo F, Killian T, Venken T, Naulaerts S, Vervoort E, Ganne M, Nittner D, Verhoeven J, Bechter O, Bosisio F, Lambrechts D, Sifrim A, Stockwell BR, Swinnen JV, Marine JC, Agostinis P. Secreted Apoe rewires melanoma cell state vulnerability to ferroptosis. SCIENCE ADVANCES 2024; 10:eadp6164. [PMID: 39413195 DOI: 10.1126/sciadv.adp6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
A major therapeutic barrier in melanoma is the coexistence of diverse cellular states marked by distinct metabolic traits. Transitioning from a proliferative to an invasive melanoma phenotype is coupled with increased ferroptosis vulnerability. However, the regulatory circuits controlling ferroptosis susceptibility across melanoma cell states are unknown. In this work, we identified Apolipoprotein E (APOE) as the top lipid-metabolism gene segregating the melanoma MITFhigh/AXLlow proliferative/ferroptosis-resistant from MITFlow/AXLhigh invasive/ferroptosis-sensitive state. Mechanistically, ApoE secreted by the MITFhigh/AXLlow cells protects the invasive phenotype from ferroptosis-inducing agents by reducing the content of peroxidation-prone polyunsaturated fatty acids and boosting GPX4 levels both in vitro and in vivo. Whole-exome sequencing indicates that APOEhigh expression in patients with melanoma is associated with resistance to ferroptosis, regardless of APOE germline status. In aggregate, we found a ferroptosis-resistance mechanism between melanoma cell states relying on secreted ApoE and APOEhigh expression as a potential biomarker for poor ferroptosis response in melanoma.
Collapse
Affiliation(s)
- Sanket More
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julie Bonnereau
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Wouters
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Theo Killian
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven, Leuven, Belgium
| | - Tom Venken
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Nittner
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Spatial Multiomics Expertise Center, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- LKI, Department of General Medical Oncology, Department of Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Huang X, Xue Z, Zhang D, Lee HJ. Pinpointing Fat Molecules: Advances in Coherent Raman Scattering Microscopy for Lipid Metabolism. Anal Chem 2024; 96:7945-7958. [PMID: 38700460 DOI: 10.1021/acs.analchem.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Xiangjie Huang
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Zexin Xue
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Zhang S, Fang T, He Y, Feng W, Yu Z, Zheng Y, Zhang C, Hu S, Liu Z, Liu J, Yu J, Zhang H, He A, Gong Y, He Z, Yang K, Xi Z, Yu W, Zhou L, Yao L, Yue S. VHL mutation drives human clear cell renal cell carcinoma progression through PI3K/AKT-dependent cholesteryl ester accumulation. EBioMedicine 2024; 103:105070. [PMID: 38564827 PMCID: PMC10999658 DOI: 10.1016/j.ebiom.2024.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).
Collapse
Affiliation(s)
- Shuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Tinghe Fang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yexuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Weichen Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhuoyang Yu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yaoyao Zheng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Chi Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jian Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Han Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Kaiwei Yang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhijun Xi
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
4
|
Zeng J, Wu G, Jia H, Liu C, Liu C, Zhang Y, Liu S, Wang J, Yue S. Stimulated Raman Scattering Microscopy Reveals Aberrant Triglyceride Accumulation in Lymphatic Metastasis of Papillary Thyroid Carcinoma. Anal Chem 2024; 96:5735-5740. [PMID: 38567982 DOI: 10.1021/acs.analchem.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Lipid metabolic alterations are known to play a crucial role in cancer metastasis. As a key hub in lipid metabolism, intracellular neutral lipid accumulation in lipid droplets (LDs) has become a signature of aggressive human cancers. Nevertheless, it remains unclear whether lipid accumulation displays distinctive features in metastatic lesions compared to the primary ones. Here, we integrated multicolor stimulated Raman scattering (SRS) imaging with confocal Raman spectroscopy on the same platform to quantitatively analyze the amount and composition of LDs in intact human thyroid tissues in situ without any processing or labeling. Inspiringly, we found aberrant accumulation of triglycerides (TGs) in lymphatic metastases but not in normal thyroid, primary papillary thyroid carcinoma (PTC), or normal lymph node. In addition, the unsaturation degree of unsaturated TGs was significantly higher in the lymphatic metastases from patients diagnosed with late-stage (T3/T4) PTC compared to those of patients diagnosed with early-stage (T1/T2) PTC. Furthermore, both public sequencing data analysis and our RNA-seq transcriptomic experiment showed significantly higher expression of alcohol dehydrogenase-1B (ADH1B), which is critical to lipid uptake and transport, in lymphatic metastases relative to the primary ones. In summary, these findings unravel the lipid accumulation as a novel marker and therapeutic target for PTC lymphatic metastasis that has a poor response to the regular radioactive iodine therapy.
Collapse
Affiliation(s)
- Junjie Zeng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Guoliang Wu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hao Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Changjian Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chang Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yi Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian Wang
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Huang X, Gao X, Fu L. BINGO: a blind unmixing algorithm for ultra-multiplexing fluorescence images. Bioinformatics 2024; 40:btae052. [PMID: 38291952 PMCID: PMC10873573 DOI: 10.1093/bioinformatics/btae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/01/2024] Open
Abstract
MOTIVATION Spectral imaging is often used to observe different objects with multiple fluorescent labels to reveal the development of the biological event. As the number of observed objects increases, the spectral overlap between fluorophores becomes more serious, and obtaining a "pure" picture of each fluorophore becomes a major challenge. Here, we propose a blind spectral unmixing algorithm called BINGO (Blind unmixing via SVD-based Initialization Nmf with project Gradient descent and spare cOnstrain), which can extract all kinds of fluorophores more accurately from highly overlapping multichannel data, even if the spectra of the fluorophores are extremely similar or their fluorescence intensity varies greatly. RESULTS BINGO can isolate up to 10 fluorophores from spectral imaging data for a single excitation. nine-color living HeLa cells were visualized distinctly with BINGO. It provides an important algorithmic tool for multiplex imaging studies, especially in intravital imaging. BINGO shows great potential in multicolor imaging for biomedical sciences. AVAILABILITY AND IMPLEMENTATION The source code used for this paper is available with the test data at https://github.com/Xinyuan555/BINGO_unmixing.
Collapse
Affiliation(s)
- Xinyuan Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiujuan Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
- School of Physics and Optoelectronics Engineering, Hainan University, Haikou 570228, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
6
|
Dong Y, Xia P, Xu X, Shen J, Ding Y, Jiang Y, Wang H, Xie X, Zhang X, Li W, Li Z, Wang J, Zhao SC. Targeted delivery of organic small-molecule photothermal materials with engineered extracellular vesicles for imaging-guided tumor photothermal therapy. J Nanobiotechnology 2023; 21:442. [PMID: 37993888 PMCID: PMC10666357 DOI: 10.1186/s12951-023-02133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 11/24/2023] Open
Abstract
Imaging-guided photothermal therapy (PTT) for cancers recently gathered increasing focus thanks to its precise diagnosis and potent therapeutic effectiveness. Croconaine (CR) dyes demonstrate potential in expanding utility for near infrared (NIR) dyes in bio-imaging/theranostics. However, reports on CR dyes for PTT are scarce most likely due to the short of the efficacious delivery strategies to achieve specific accumulation in diseased tissues to induce PTT. Extracellular vesicles (EVs) are multifunctional nanoparticle systems that function as safe platform for disease theragnostics, which provide potential benefits in extensive biomedical applications. Here, we developed a novel delivery system for photothermal molecules based on a CR dye that exerts photothermal activity through CDH17 nanobody-engineered EVs. The formed CR@E8-EVs showed strong NIR absorption, excellent photothermal performance, good biological compatibility and superb active tumor-targeting capability. The CR@E8-EVs can not only visualize and feature the tumors through CR intrinsic property as a photoacoustic imaging (PAI) agent, but also effectively retard the tumor growth under laser irradiation to perform PTT. It is expected that the engineered EVs will become a novel delivery vehicle of small organic photothermal agents (SOPTAs) in future clinical PTT applications.
Collapse
Affiliation(s)
- Yafang Dong
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Peng Xia
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiaolong Xu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Jing Shen
- Department of Oncology, Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Youbin Ding
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, P. R. China
| | - Yuke Jiang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Huifang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Xin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, P. R. China
| | - Weihua Li
- Medical imaging department, Shenzhen Second People's Hospital/the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China.
| | - Zhijie Li
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
| | - Jigang Wang
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China.
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
| |
Collapse
|
7
|
Zhu Y, Ge X, Ni H, Yin J, Lin H, Wang L, Tan Y, Prabhu Dessai CV, Li Y, Teng X, Cheng JX. Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging. SCIENCE ADVANCES 2023; 9:eadi2181. [PMID: 37889965 PMCID: PMC10610916 DOI: 10.1126/sciadv.adi2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics, and couplings in complex systems. However, the sensitivity of SRS is fundamentally limited to the millimolar level due to shot noise and the small modulation depth. To overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrationally excited states. The subsequent relaxation heats up the surroundings and induces refractive index changes. By probing the refractive index changes with a laser beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved. The versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. SRP microscopy opens a way to perform vibrational spectroscopic imaging with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
8
|
Wang N, Wang J, Wang P, Ji N, Yue S. Label-Free Raman Spectromicroscopy Unravels the Relationship between MGMT Methylation and Intracellular Lipid Accumulation in Glioblastoma. Anal Chem 2023; 95:11567-11571. [PMID: 37417930 PMCID: PMC10413324 DOI: 10.1021/acs.analchem.3c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Temozolomide (TMZ) is considered a first line chemotherapy drug for glioblastoma (GBM). Unfortunately, the GBM without methylation of O6-methylguanine-DNA methyltransferase (MGMT), accounting for about 70% of all GBM, shows an inherent resistance to TMZ treatment. Aberrant accumulation of neutral lipids, primarily triglycerides (TGs) and cholesteryl esters (CEs), in lipid droplets (LDs) has been recognized as metabolic vulnerability for GBM therapy. However, it is not known whether MGMT methylation affects lipid accumulation in GBM. Herein, we employed label-free Raman spectromicroscopy, which integrated stimulated Raman scattering (SRS) microscopy and confocal Raman spectroscopy, to quantitatively analyze both the amount and composition of intracellular LDs in intact GBM tissues obtained from patients who had undergone resection surgery. Our results showed significant reductions in both the LD amount and the CE percentage in MGMT unmethylated GBMs (MGMT methylation < 15%) compared to MGMT methylated ones (MGMT methylation ≥ 15%). Due to a big variation of lipid accumulation in the MGMT methylated GBMs, these patients were further divided into hypermethylated group (MGMT methylation ≥ 50%) and intermediate-methylated group (MGMT methylation 15∼50%), according to the significantly different median survival rates of these two groups. Remarkable differences in LD amount, CE percentage, and also lipid saturation degree were found between the hypermethylated group and the other two groups, but not between the unmethylated and intermediate-methylated groups. To elucidate the possible underlying mechanism, we analyzed the differential expression of lipid metabolism-related genes in GBM with different levels of MGMT methylation using The Cancer Genome Atlas Program (TCGA) dataset. It was shown that the genes related to lipid oxidation and lipid efflux were upregulated, and the genes related to lipid synthesis were downregulated in unmethylated group. These findings unravel the relationship between MGMT methylation and lipid accumulation in GBM, which may offer new opportunities for the diagnosis and treatment of TMZ-resistant GBM.
Collapse
Affiliation(s)
- Nana Wang
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing, 100191, China
| | - Jiejun Wang
- Department
of Neurosurgery, Beijing Tiantan Hospital,
Capital Medical University, Beijing, 100070, China
| | - Pu Wang
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing, 100191, China
| | - Nan Ji
- Department
of Neurosurgery, Beijing Tiantan Hospital,
Capital Medical University, Beijing, 100070, China
| | - Shuhua Yue
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing, 100191, China
| |
Collapse
|
9
|
Amara SV, Grbic N, Melson G, Brem CE, Almier N, Bhawan J, Alani RM, Collard M. Assessment of lipid and pigment content in suspicious melanocytic lesions to improve melanoma detection. Melanoma Res 2023; 33:283-292. [PMID: 37276030 DOI: 10.1097/cmr.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Melanoma is a highly aggressive form of skin cancer and the most frequent lethal malignancy diagnosed by dermatologists. Although there have been advances for predicting melanoma prognosis, there are few highly sensitive and specific diagnostic tools for clinically evaluating suspicious melanocytic lesions prior to biopsy. We have recently determined that alterations in cellular lipid and pigment content are associated with tumor progression and melanoma metastasis. Here, we seek to determine if lipid droplet and pigment content assessments near the skin's surface are able to distinguish benign from malignant melanocytic lesions. We obtained 14 benign melanocytic lesions, classified as Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) class 1, and 22 malignant melanomas, classified as MPATH-Dx class 4 or 5, from Boston Medical Center. The malignant melanomas had an average greatest thickness of 1.8 ± 2.1 mm with 7/22 biopsies showing the presence of ulceration. Tissues were stained with the Fontana Masson stain to detect pigment or immunohistochemically stained for adipophilin, the main protein component of lipid droplets, to detect lipid droplets. Pigment and lipid droplets were quantified using ImageJ and CellProfiler, respectively. We found no significant difference in total pigment area between benign melanocytic lesions and malignant melanoma, and a 66% decrease in lipid content and 68% reduction in lipid/pigment content between benign melanocytic lesions and malignant melanoma ( P < 0.05). Our results suggest that lipid content and lipid/pigment content ratios may distinguish benign and malignant melanocytic lesions, which may be useful as a diagnostic tool for histopathologically challenging pigmented lesions.
Collapse
Affiliation(s)
- Shivkar V Amara
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
| | - Nicole Grbic
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
| | - Gabriella Melson
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts, USA
| | - Candice E Brem
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts, USA
| | - Nedaa Almier
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
| | - Jag Bhawan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts, USA
| | - Rhoda M Alani
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts, USA
| | - Marianne Collard
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine
| |
Collapse
|
10
|
Jia H, Yue S. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology. J Phys Chem B 2023; 127:2381-2394. [PMID: 36897936 PMCID: PMC10042165 DOI: 10.1021/acs.jpcb.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Indexed: 03/11/2023]
Abstract
A lipid droplet (LD) is a dynamic organelle closely associated with cellular functions and energy homeostasis. Dysregulated LD biology underlies an increasing number of human diseases, including metabolic disease, cancer, and neurodegenerative disorder. Commonly used lipid staining and analytical tools have difficulty providing the information regarding LD distribution and composition at the same time. To address this problem, stimulated Raman scattering (SRS) microscopy uses the intrinsic chemical contrast of biomolecules to achieve both direct visualization of LD dynamics and quantitative analysis of LD composition with high molecular selectivity at the subcellular level. Recent developments of Raman tags have further enhanced sensitivity and specificity of SRS imaging without perturbing molecular activity. With these advantages, SRS microscopy has offered great promise for deciphering LD metabolism in single live cells. This article overviews and discusses the latest applications of SRS microscopy as an emerging platform to dissect LD biology in health and disease.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
11
|
Zhao J, Matlock A, Zhu H, Song Z, Zhu J, Wang B, Chen F, Zhan Y, Chen Z, Xu Y, Lin X, Tian L, Cheng JX. Bond-selective intensity diffraction tomography. Nat Commun 2022; 13:7767. [PMID: 36522316 PMCID: PMC9755124 DOI: 10.1038/s41467-022-35329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Recovering molecular information remains a grand challenge in the widely used holographic and computational imaging technologies. To address this challenge, we developed a computational mid-infrared photothermal microscope, termed Bond-selective Intensity Diffraction Tomography (BS-IDT). Based on a low-cost brightfield microscope with an add-on pulsed light source, BS-IDT recovers both infrared spectra and bond-selective 3D refractive index maps from intensity-only measurements. High-fidelity infrared fingerprint spectra extraction is validated. Volumetric chemical imaging of biological cells is demonstrated at a speed of ~20 s per volume, with a lateral and axial resolution of ~350 nm and ~1.1 µm, respectively. BS-IDT's application potential is investigated by chemically quantifying lipids stored in cancer cells and volumetric chemical imaging on Caenorhabditis elegans with a large field of view (~100 µm x 100 µm).
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Ziqi Song
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Biao Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Fukai Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhicong Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Xingchen Lin
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Li Y, Lin J, Wang P, Zhu F, Wu M, Luo Q, Zhang Y, Liu X. Tumor Microenvironment-Responsive Yolk-Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy via Osmolarity Surge and Oxidative Stress Amplification. ACS NANO 2022; 16:7380-7397. [PMID: 35435672 DOI: 10.1021/acsnano.1c09496] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-interference therapy, which utilizes ions to disturb intracellular biological processes, provides inspiration for tumor therapy. Artificially reversing osmotic pressure by transporting large amounts of physiological ions to tumor cells is a straightforward yet low-toxic strategy for ion-interference therapy. However, it is hard to achieve due to the serious limitations of single-ion delivery. Herein, we skillfully deliver NaCl nanocrystals to tumor sites and sequentially realize the explosive release of Na+/Cl- inside tumor cells by utilizing a virus-mimicking and glutathione (GSH)-responsive hollow mesoporous tetrasulfide-bridged organosilica (ssss-VHMS). Once the ssss-VHMS-wrapped NaCl nanocrystals (NaCl@ssss-VHMS) accumulate in the tumors, they would rapidly invade tumor cells via spike surface-assisted endocytosis, thus bypassing Na+/K+-ATPase transmembrane ion transporters. Afterward, the intracellular overproduced GSH of tumor cells would trigger the rapid degradation of ssss-VHMS via thiol-tetrasulfide exchange, which could not only remarkably deplete the GSH but also explosively release the Na+/Cl-, leading to the osmolarity surge accompanied by reactive oxygen species (ROS) generation. The cell swelling, ROS storm, and GSH exhaustion of NaCl@ssss-VHMS effectively eradicated tumor cells by caspase-1-dependent pyroptosis, caspase-3-dependent apoptosis, and GPX4-dependent ferroptosis, respectively, thus synergistically inhibiting tumor growth. We believe that NaCl@ssss-VHMS would be a potential cancer therapeutic agent, and this discovery could provide a perspective for exploring synergistic ion-interference therapy.
Collapse
Affiliation(s)
- Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Jinyan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Peiyuan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Fukai Zhu
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Qiang Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yun Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| |
Collapse
|