1
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Chen W, Xia M, Zhu W, Xu Z, Cai B, Shen H. A bio-fabricated tesla valves and ultrasound waves-powered blood plasma viscometer. Front Bioeng Biotechnol 2024; 12:1394373. [PMID: 38720878 PMCID: PMC11076727 DOI: 10.3389/fbioe.2024.1394373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: There is clinical evidence that the fresh blood viscosity is an important indicator in the development of vascular disorder and coagulation. However, existing clinical viscosity measurement techniques lack the ability to measure blood viscosity and replicate the in-vivo hemodynamics simultaneously. Methods: Here, we fabricate a novel digital device, called Tesla valves and ultrasound waves-powered blood plasma viscometer (TUBPV) which shows capacities in both viscosity measurement and coagulation monitoring. Results: Based on the Hagen-Poiseuille equation, viscosity analysis can be faithfully performed by a video microscopy. Tesla-like channel ensured unidirectional liquid motion with stable pressure driven that was triggered by the interaction of Tesla valve structure and ultrasound waves. In few seconds the TUBPV can generate an accurate viscosity profile on clinic fresh blood samples from the flow time evaluation. Besides, Tesla-inspired microchannels can be used in the real-time coagulation monitoring. Discussion: These results indicate that the TUBVP can serve as a point-of-care device in the ICU to evaluate the blood's viscosity and the anticoagulation treatment.
Collapse
Affiliation(s)
- Wenqin Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mao Xia
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wentao Zhu
- School of Environment and Health, Jianghan University, Wuhan, China
| | - Zhiye Xu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bo Cai
- School of Environment and Health, Jianghan University, Wuhan, China
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Lin Z, Duan S, Liu M, Dang C, Qian S, Zhang L, Wang H, Yan W, Zhu M. Insights into Materials, Physics, and Applications in Flexible and Wearable Acoustic Sensing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306880. [PMID: 38015990 DOI: 10.1002/adma.202306880] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Sound plays a crucial role in the perception of the world. It allows to communicate, learn, and detect potential dangers, diagnose diseases, and much more. However, traditional acoustic sensors are limited in their form factors, being rigid and cumbersome, which restricts their potential applications. Recently, acoustic sensors have made significant advancements, transitioning from rudimentary forms to wearable devices and smart everyday clothing that can conform to soft, curved, and deformable surfaces or surroundings. In this review, the latest scientific and technological breakthroughs with insightful analysis in materials, physics, design principles, fabrication strategies, functions, and applications of flexible and wearable acoustic sensing technology are comprehensively explored. The new generation of acoustic sensors that can recognize voice, interact with machines, control robots, enable marine positioning and localization, monitor structural health, diagnose human vital signs in deep tissues, and perform organ imaging is highlighted. These innovations offer unique solutions to significant challenges in fields such as healthcare, biomedicine, wearables, robotics, and metaverse. Finally, the existing challenges and future opportunities in the field are addressed, providing strategies to advance acoustic sensing technologies for intriguing real-world applications and inspire new research directions.
Collapse
Affiliation(s)
- Zhiwei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengshun Duan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Chao Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Luxue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hailiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Zhang TY, Liu FQ, Li Z, Xu YT, Zhao WW, Chen HY, Xu JJ. A hollow Ag/AgCl nanoelectrode for single-cell chloride detection. Chem Commun (Camb) 2024; 60:2373-2376. [PMID: 38318933 DOI: 10.1039/d3cc06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This work reports the construction of a miniaturized Ag/AgCl nanoelectrode on a nanopipette, which is capable of dual-functions of single-cell drug infusion and chloride detection and is envisioned to promote the study of chloride-correlated therapeutic effects.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Fang-Qing Liu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zheng Li
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Tong Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wei-Wei Zhao
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Wang HY, Wang B, Sun C, Zhang TY, Xu YT, Zhao WW, Chen HY, Xu JJ. θ-Nanopore Ratiometry. ACS NANO 2024; 18:4551-4558. [PMID: 38264998 DOI: 10.1021/acsnano.3c12238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing nanoscale ratiometric techniques capable of biochemical response should prove of significance for precise applications with stringent spatial and biological restrictions. Here we present and devise the concept of θ-nanopore ratiometry, which uses ratiometric signals that could well address the serious concerns about device deviation in fabrication and nonspecific adsorption in the detection. As exemplified by a 200 nm θ-nanopore toward miRNA detection, the ±20 nm aperture drift could be mitigated and the issue of nonspecific adsorption could be minimized in the complex cytosolic environment. Practical application of this θ-nanopore ratiometry realizes the measurements of cytosolic miRNA-10b. This work has not only established a nanoscopic ratiometric technique but also enriched the extant armory of nanotools for single-cell studies and beyond.
Collapse
Affiliation(s)
- Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Yu SY, Liu YL, Li Z, Jiang D, Xu JJ, Chen HY, Zhao WW. Nature-inspired design of droplet-synthesized polymeric nanoelectrode for photoelectrochemical microRNA sensing within single cells. Sci Bull (Beijing) 2024; 69:159-162. [PMID: 37993330 DOI: 10.1016/j.scib.2023.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wang B, Xu YT, Zhang TY, Wang HY, Zhang X, Wu ZQ, Zhao WW, Chen HY, Xu JJ. An Ultrasensitive and Efficient microRNA Nanosensor Empowered by the CRISPR/Cas Confined in a Nanopore. NANO LETTERS 2024; 24:202-208. [PMID: 38126308 DOI: 10.1021/acs.nanolett.3c03723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This work presents a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas-nanopipette nano-electrochemistry (Cas = CRISPR-associated proteins) capable of ultrasensitive microRNA detection. Nanoconfinement of the CRISPR/Cas13a within a nanopipette leads to a high catalytic efficacy of ca. 169 times higher than that in bulk electrolyte, contributing to the amplified electrochemical responses. CRISPR/Cas13a-enabled detection of representative microRNA-25 achieves a low limit of detection down to 10 aM. Practical application of this method is further demonstrated for single-cell and real human serum detection. Its general applicability is validated by addressing microRNA-141 and the SARS-CoV-2 RNA gene fragment. This work introduces a new CRISPR/Cas-empowered nanotechnology for ultrasensitive nano-electrochemistry and bioanalysis.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zeng-Qiang Wu
- School of Public Health, Institute of Analytical Chemistry for Life Science, Nantong University, Nantong 226019, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Ban R, Li CJ, Xu YT, Zhu YY, Ju P, Li YM, Du HJ, Hu J, Chen G, Lin P, Zhao WW. Alkaline Phosphatase-Mediated Bioetching of CoOOH/BiVO 4 for Signal-On Organic Photoelectrochemical Transistor Bioanalysis. Anal Chem 2023; 95:1454-1460. [PMID: 36538530 DOI: 10.1021/acs.analchem.2c04447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organic photoelectrochemical transistor (OPECT) bioanalytics has recently appeared as a promising route for biological measurements, which has major implications in both next-generation photoelectrochemical (PEC) bioanalysis and futuristic biorelated implementations. Via biological dissociation of materials, bioetching is a useful technique for bio-manufacturing and bioanalysis. The intersection of these two domains is expected to be a possible way to achieve innovative OPECT bioanalytics. Herein, we validate such a possibility, which is exemplified by alkaline phosphatase (ALP)-mediated bioetching of a CoOOH/BiVO4 gate for a signal-on OPECT immunoassay of human immunoglobulin G (HIgG) as the model target. Specifically, target-dependent bioetching of the upper CoOOH layer could result into an enhanced electrolyte contact and light accessibility to BiVO4, leading to the modulated response of the polymeric poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel that could be monitored by the channel current. The introduced biosensor achieves sensitive detection of HIgG with high selectivity and sensitivity. This work features bioetching-enabled high-efficacy OPECT bioanalysis and is anticipated to serve as a generic protocol, considering the diverse bioetching routes.
Collapse
Affiliation(s)
- Rui Ban
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang550018, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang550018, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yu-Yue Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao266061, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao266061, China
| | - Yu-Mei Li
- School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Hai-Jun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|