1
|
Zhang Y, Song Y, Lin S, Zhang X, Wang Z, Wu X. A Biomimetic Passive Mechanotransduction Mechanism Based on Interfacial Regulation of Ionic p-n Junctions. ACS NANO 2025. [PMID: 39874209 DOI: 10.1021/acsnano.4c14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.e., ionic potential difference) and signal intensity (≈120 mV). More importantly, the instant interfacial IPNJ regulation characteristic endows the sensors with superior performance when compared to the state-of-the-art piezoionic sensors, including a low detection limit of 0.01 N, fast response/recovery speeds (16 ms/16 ms), ultralow power consumption (pW level), excellent reproducibility (over 100,000 cycles), and good capabilities to resolve both static and dynamic mechanical stimulations. As demonstrations, machine-learning-assisted high accuracy (over 99%) surface texture recognition and object classification are successfully demonstrated with the sensors integrated on robotic hands. This work enriches the family of mechanical sensing mechanisms and provides a path to mimicking natural tactile sensory systems for smart skins, artificial prostheses, and intelligent robots.
Collapse
Affiliation(s)
- Yiqun Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yangyang Song
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Sijian Lin
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuyi Zhang
- School of Engineering Science, Royal Institute of Technology, Stockholm 11428, Sweden
| | - Zhuqing Wang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Yin J, Jia P, Ren Z, Zhang Q, Lu W, Yao Q, Deng M, Zhou X, Gao Y, Liu N. Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels. RESEARCH (WASHINGTON, D.C.) 2025; 8:0571. [PMID: 39810855 PMCID: PMC11729273 DOI: 10.34133/research.0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities. Nevertheless, the majority of existing sensors based on ionic hydrogels still mainly rely on external power sources, which greatly restrict the dexterity and convenience of their applications. Advances in energy harvesting technologies offer substantial potential toward engineering self-powered sensors. This article reviews in detail the self-powered mechanisms of ionic hydrogel self-powered sensors (IHSSs), including piezoelectric, triboelectric, ionic diode, moist-electric, thermoelectric, potentiometric transduction, and hybrid modes. At the same time, structural engineering related to device and material characteristics is discussed. Additionally, the relevant applications of IHSS toward wearable electronics, human-machine interaction, environmental monitoring, and medical diagnostics are further reviewed. Lastly, the challenges and prospective advancement of IHSS are outlined.
Collapse
Affiliation(s)
- Jianyu Yin
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Peixue Jia
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ziqi Ren
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qixiang Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wenzhong Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qianqian Yao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Mingfang Deng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xubin Zhou
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
3
|
Yan J, Ding J, Cao Y, Yi H, Zhan L, Gao Y, Ge K, Ji H, Li M, Feng H. Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces. SENSORS (BASEL, SWITZERLAND) 2024; 25:37. [PMID: 39796832 PMCID: PMC11722807 DOI: 10.3390/s25010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.1 mm. The size of the sensing unit was 3 × 3 mm2. This unit exhibited a wide linear sensing range (10-22,000 Pa) and high-pressure resolution (10 Pa) even on an ultra-curved surface (radius of curvature was 6 mm). Sliding was successfully detected at speeds of 8-54 mm/s. An artificial nose with nine sensing units was fabricated, and it exhibited excellent multitouch and sliding trajectory recognition capabilities. This confirmed that the electronic skin functioned normally, even on an ultra-curved surface.
Collapse
Affiliation(s)
- Jiangnan Yan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianing Ding
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Cao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongyu Yi
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Kongyu Ge
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Tanguy NR, Rajabi‐Abhari A, Williams‐Linera E, Miao Z, Tratnik N, Zhang X, Hao C, Virya A, Yan N, Lagadec RL. Highly Conducting and Ultra-Stretchable Wearable Ionic Liquid-Free Transducer for Wireless Monitoring of Physical Motions. Macromol Rapid Commun 2024; 45:e2400418. [PMID: 39475166 PMCID: PMC11628364 DOI: 10.1002/marc.202400418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Indexed: 12/11/2024]
Abstract
Wearable strain transducers are poised to transform the field of healthcare owing to the promise of personalized devices capable of real-time collection of human physiological health indicators. For instance, monitoring patients' progress following injury and/or surgery during physiotherapy is crucial but rarely performed outside clinics. Herein, multifunctional liquid-free ionic elastomers are designed through the volume effect and the formation of dynamic hydrogen bond networks between polyvinyl alcohol (PVA) and weak acids (phosphoric acid, phytic acid, formic acid, citric acid). An ultra-stretchable (4600% strain), highly conducting (10 mS cm-1), self-repairable (77% of initial strain), and adhesive ionic elastomer is obtained at high loadings of phytic acid (4:1 weight to PVA). Moreover, the elastomer displayed durable performances, with intact mechanical properties after a year of storage. The elastomer is used as a transducer to monitor human motions in a device comprising an ESP32-based development board. The device detected walking and/or running biomechanics and communicated motion-sensing data (i.e., amplitude, frequency) wirelessly. The reported technology can also be applied to other body parts to monitor recovery after injury and/or surgery and inform practitioners of motion biomechanics remotely and in real time to increase convalescence effectiveness, reduce clinic appointments, and prevent injuries.
Collapse
Affiliation(s)
- Nicolas R. Tanguy
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
- Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaro, Querétaro76230México
| | - Araz Rajabi‐Abhari
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | | | - Zheyuan Miao
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Nicole Tratnik
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Xiao Zhang
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Cheng Hao
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Alvin Virya
- Department of Materials Science and EngineeringUniversity of TorontoTorontoOntarioM5S 3E4Canada
| | - Ning Yan
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
| | - Ronan Le Lagadec
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
| |
Collapse
|
5
|
Song P, Zhou D, Wang F, Li G, Bai L, Su J. Programmable biomaterials for bone regeneration. Mater Today Bio 2024; 29:101296. [PMID: 39469314 PMCID: PMC11513843 DOI: 10.1016/j.mtbio.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Programmable biomaterials are distinguished by their ability to adjust properties and functions on demand, in a periodic, reversible, or sequential manner. This contrasts with traditional biomaterials, which undergo irreversible, uncontrolled changes. This review synthesizes key advances in programmable biomaterials, examining their design principles, functionalities and applications in bone regeneration. It charts the transition from traditional to programmable biomaterials, emphasizing their enhanced precision, safety and control, which are critical from clinical and biosafety standpoints. We then classify programmable biomaterials into six types: dynamic nucleic acid-based biomaterials, electrically responsive biomaterials, bioactive scaffolds with programmable properties, nanomaterials for targeted bone regeneration, surface-engineered implants for sequential regeneration and stimuli-responsive release materials. Each category is analyzed for its structural properties and its impact on bone tissue engineering. Finally, the review further concludes by highlighting the challenges faced by programmable biomaterials and suggests integrating artificial intelligence and precision medicine to enhance their application in bone regeneration and other biomedical fields.
Collapse
Affiliation(s)
- Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghaizhongye Hospital, Shanghai, 200941, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Baret JC. Droplet-based microprocessors. Science 2024; 386:970-971. [PMID: 39607942 DOI: 10.1126/science.adt6784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Soft devices made of nanoliter hydrogel beads use ions for computation.
Collapse
Affiliation(s)
- Jean-Christophe Baret
- Centre de Recherche Paul Pascal, University of Bordeaux, CNRS, CRPP-UMR5031, Pessac, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
7
|
Yang Z, Wang J, Wan X, Xu H, Zhang C, Lu X, Jing W, Guo C, Wei X. Microbubble-based fabrication of resilient porous ionogels for high-sensitivity pressure sensors. MICROSYSTEMS & NANOENGINEERING 2024; 10:177. [PMID: 39587057 PMCID: PMC11589707 DOI: 10.1038/s41378-024-00780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 11/27/2024]
Abstract
High-sensitivity flexible pressure sensors have obtained extensive attention because of their expanding applications in e-skins and wearable medical devices for various disease diagnoses. As the representative candidate for these sensors, the iontronic microstructure has been widely proven to enhance sensation behaviors such as the sensitivity and limits of detection. However, the fast and tunable fabrication of ionic-porous sensing elastomers remains challenging because of the current template-dissolved or 3D printing methods. Here, we report a microbubble-based fabrication process that enables microporous and resilient-compliance ionogels for high-sensitivity pressure sensors. Periodic motion sliding results in a relative velocity between the imported airflow and the fluid solution, converts the airflow to microbubbles in the high-viscosity ionic fluid and promptly solidifies the fluid into a porous ionogel under ultraviolet exposure. The ultrahigh porosity of up to 95% endows the porous ionogel with superelasticity and a Young's modulus near 7 kPa. Due to the superelastic compliance and iontronic electrical double-layer effect, the porous ionogel packaged into two electrodes endows the pressure sensor with high sensitivity (684.4 kPa-1) over an ultrabroad range (~1 MPa) and a high-pressure resolution of 0.46%. Furthermore, the pressure sensor successfully captures high-yield broad-range signals from the fingertip low-pressure pulses (<1 kPa) to foot high-pressure activities (>500 kPa), even the grasping force of soft machine hands via an array-scanning circuit during object recognition. This microbubble-based fabrication process for porous ionogels paves the way for designing wearable sensors or permeable electronics to monitor and diagnose various diseases.
Collapse
Affiliation(s)
- Ziwei Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingxiao Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Wan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongcheng Xu
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuanyu Zhang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoke Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuanfei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
8
|
Cai Y, Shen J, Yang N, Chen Z, Wan Y, Chiang YH, Ee LY, Wang Y, Tung V, Han Y, Pinnau I, Huang KW, Li LJ, Dong X. MXene-Fiber Composite Membranes for Permeable and Biocompatible Skin-Interfaced Iontronic Mechanosensing. NANO LETTERS 2024; 24:12333-12342. [PMID: 39302876 DOI: 10.1021/acs.nanolett.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Artificial ionic sensory systems, bridging the divide between biological systems and electronics, mimic human skin functions but face critical challenges with biocompatibility, comfort, signal stability, and simplifying packaging. Here, we present a simple and permeable skin-interfaced iontronic mechanosensing (SIIM) architecture that integrates human skin as natural ionic material and hierarchically porous MXene-fiber composite membranes as sensing electrodes. The SIIM system eliminates complex ionic material design and multilayer matrix, exhibiting ultrahigh pressure sensitivities (5.4 kPa-1, <75 Pa), a low detection limit (6 Pa), excellent output stability along with high permeability to minimize the impact of sweating on sensing. The noncytotoxic nature of SIIM electrodes ensures excellent biocompatibility (>97% cell coincubational viability), facilitating long-term wearability and high biosafety. Furthermore, the scalable SIIM configuration integrated with matrix smart gloves, effectively monitors human physical movements. This SIIM-based sensor with marked sensing capabilities, structural simplicity, and scalability, holds promising potential in diverse wearable applications.
Collapse
Affiliation(s)
- Yichen Cai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jie Shen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhuo Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yi Wan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077
| | - Yu-Hsiang Chiang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Liang Ying Ee
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yingge Wang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vincent Tung
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China
| | - Ingo Pinnau
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
9
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
10
|
Zhang B, Xiang L, Yan C, Jiang Z, Zhao H, Li C, Zhang F. Morphology-Controlled Ion Transport in Mixed-Orientation Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32456-32465. [PMID: 38862274 DOI: 10.1021/acsami.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Advancing iontronics with precisely controlled ion transport is fundamentally important to bridge external organic electronics with the biosystem. This long-standing goal, however, is thus far limited by the trade-off between the active ion electromigration and idle diffusion leakage in the (semi)crystalline film. Here, we presented a mixed-orientation strategy by blending a conjugated polymer, allowing for simultaneously high ion electromigration efficiency and low leakage. Our studies revealed that edge-on aggregation with a significant percolative pathway exhibits much higher ion permeability than that of the face-on counterpart but encounters pronounced leakage diffusion. Through carefully engineering the mixed orientations, the polymer composite demonstrated an ideal switchable ion-transport behavior, achieving a remarkably high electromigration efficiency exceeding one quadrillion ions per milliliter per minute and negligible idle leakage. This proof of concept, validated by drug release in a skin-conformable organic electronic ion pump (OEIP), offers a rational approach for the development of multifunctional iontronic devices.
Collapse
Affiliation(s)
- Boya Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Lanyi Xiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chaoyi Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Haozhen Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Chenyang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
11
|
Lin Z, Duan S, Liu M, Dang C, Qian S, Zhang L, Wang H, Yan W, Zhu M. Insights into Materials, Physics, and Applications in Flexible and Wearable Acoustic Sensing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306880. [PMID: 38015990 DOI: 10.1002/adma.202306880] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Sound plays a crucial role in the perception of the world. It allows to communicate, learn, and detect potential dangers, diagnose diseases, and much more. However, traditional acoustic sensors are limited in their form factors, being rigid and cumbersome, which restricts their potential applications. Recently, acoustic sensors have made significant advancements, transitioning from rudimentary forms to wearable devices and smart everyday clothing that can conform to soft, curved, and deformable surfaces or surroundings. In this review, the latest scientific and technological breakthroughs with insightful analysis in materials, physics, design principles, fabrication strategies, functions, and applications of flexible and wearable acoustic sensing technology are comprehensively explored. The new generation of acoustic sensors that can recognize voice, interact with machines, control robots, enable marine positioning and localization, monitor structural health, diagnose human vital signs in deep tissues, and perform organ imaging is highlighted. These innovations offer unique solutions to significant challenges in fields such as healthcare, biomedicine, wearables, robotics, and metaverse. Finally, the existing challenges and future opportunities in the field are addressed, providing strategies to advance acoustic sensing technologies for intriguing real-world applications and inspire new research directions.
Collapse
Affiliation(s)
- Zhiwei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengshun Duan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Chao Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Luxue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hailiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Wang X, Ivanov AP, Edel JB. Biocompatible Biphasic Iontronics Enable Neuron-Like Ionic Signal Transmission. RESEARCH (WASHINGTON, D.C.) 2024; 7:0294. [PMID: 38292443 PMCID: PMC10826849 DOI: 10.34133/research.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
Biocompatible connections between external artificial devices and living organisms show promise for future neuroprosthetics and therapeutics. The study in Science by Zhao and colleagues introduces a cascade-heterogated biphasic gel (HBG) iontronic device, which facilitates electronic-to-multi-ionic signal transduction for abiotic-biotic interfaces. Inspired by neuron signaling, the HBG device demonstrated its biocompatibility by regulating neural activity in biological tissue, paving the way for wearable and implantable devices, including brain-computer interfaces.
Collapse
Affiliation(s)
| | - Aleksandar P. Ivanov
- Department of Chemistry,
Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
| | - Joshua B. Edel
- Department of Chemistry,
Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
| |
Collapse
|
13
|
Wang M, Zhang L, Hao H, Yan M, Zhu Z. Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplant 2024; 33:9636897241235464. [PMID: 38491929 PMCID: PMC10944590 DOI: 10.1177/09636897241235464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024] Open
Abstract
The scale of the cosmetic market is increasing every day. There are many safety risks to cosmetics, but they benefit people at the same time. The skin can become red, swollen, itchy, chronically toxic, and senescent due to the misuse of cosmetics, triggering skin injuries, with contact dermatitis being the most common. Therefore, there is an urgent need for a system that can scientifically and rationally detect the composition and perform a toxicological assessment of cosmetic products. Traditional detection methods rely on instrumentation and method selection, which are less sensitive and more complex to perform. Engineered skin tissue has emerged with the advent of tissue engineering technology as an emerging bioengineering technology. The ideal engineered skin tissue is the basis for building good in vitro structures and physiological functions in this field. This review introduces the existing cosmetic testing and toxicological evaluation methods, the current development status, and the types and characteristics of engineered skin tissue. The application of engineered skin tissue in the field of cosmetic composition detection and toxicological evaluation, as well as the different types of tissue engineering scaffold materials and three-dimensional (3D) organoid preparation approaches, is highlighted in this review to provide methods and ideas for constructing the next engineered skin tissue for cosmetic raw material component analysis and toxicological evaluation.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Linfeng Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Muyang Yan
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ziying Zhu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
14
|
Choi SG, Kang SH, Lee JY, Park JH, Kang SK. Recent advances in wearable iontronic sensors for healthcare applications. Front Bioeng Biotechnol 2023; 11:1335188. [PMID: 38162187 PMCID: PMC10757853 DOI: 10.3389/fbioe.2023.1335188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Iontronic sensors have garnered significant attention as wearable sensors due to their exceptional mechanical performance and the ability to maintain electrical performance under various mechanical stimuli. Iontronic sensors can respond to stimuli like mechanical stimuli, humidity, and temperature, which has led to exploration of their potential as versatile sensors. Here, a comprehensive review of the recent researches and developments on several types of iontronic sensors (e.g., pressure, strain, humidity, temperature, and multi-modal sensors), in terms of their sensing principles, constituent materials, and their healthcare-related applications is provided. The strategies for improving the sensing performance and environmental stability of iontronic sensors through various innovative ionic materials and structural designs are reviewed. This review also provides the healthcare applications of iontronic sensors that have gained increased feasibility and broader applicability due to the improved sensing performance. Lastly, outlook section discusses the current challenges and the future direction in terms of the applicability of the iontronic sensors to the healthcare.
Collapse
Affiliation(s)
- Sung-Geun Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Hun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju-Yong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hyeon Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
- Nano Systems Institute SOFT Foundry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Tang W, Sun Q, Wang ZL. Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology. Chem Rev 2023; 123:12105-12134. [PMID: 37871288 PMCID: PMC10636741 DOI: 10.1021/acs.chemrev.3c00305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.
Collapse
Affiliation(s)
- Wei Tang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Applied Nanotechnology, Jiaxing, Zhejiang 314031, P.R. China
| | - Qijun Sun
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Yonsei
Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
- Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
16
|
Yang Z, Tian H, Wang C, Li X, Chen X, Chen X, Shao J. Piezoelectric Drop-on-Demand Inkjet Printing with Ultra-High Droplet Velocity. RESEARCH (WASHINGTON, D.C.) 2023; 6:0248. [PMID: 37840768 PMCID: PMC10574180 DOI: 10.34133/research.0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
Improving droplet velocity as much as possible is considered as the key to improving both printing speed and printing distance of the piezoelectric drop-on-demand inkjet printing technology. There are 3 tough and contradictory issues that need to be addressed simultaneously, namely, the actuation pressure of the piezoelectric printhead, satellite droplets, and the air resistance, which seems almost impossible to achieve with classical methods. Herein, a novel solution is introduced. By modulating the positive crosstalk effect inside and outside the printhead, self-tuning can be achieved, including self-reinforcing of the actuation pressure, self-restraining of satellite droplets, and self-weakening of the air resistance, thereby greatly improving droplet velocity. Based on these mechanisms, waveform design methods for different inks and printheads are investigated. The results demonstrate that monodisperse droplet jetting with a maximum velocity of 27.53 m/s can be achieved, reaching 3 to 5 times that of the classical method (5 to 8 m/s). Correspondingly, the printing speed and distance can be simultaneously increased by almost 10 times, demonstrating an ability of direct printing on irregular surface. Meanwhile, the compatibility of ink materials is expanded, as the Ohnesorge number and the viscosity of printable inks for the printhead used are increased from 0.36-0.72 to 0.03-1.18 and from 10-12 cp to 1-40.3 cp, respectively, even breaking the traditional limitations of the piezoelectric printing technology (Ohnesorge number of 0.1 to 1; viscosity of 1 to 25 cp). All the above provide a new perspective for improving droplet velocity and may even offer a game-changing choice for expanding the boundaries of the piezoelectric drop-on-demand inkjet printing technology.
Collapse
Affiliation(s)
- Zhengjie Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoming Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
17
|
Qiao H, Sun S, Wu P. Non-equilibrium-Growing Aesthetic Ionic Skin for Fingertip-Like Strain-Undisturbed Tactile Sensation and Texture Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300593. [PMID: 36861380 DOI: 10.1002/adma.202300593] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Indexed: 05/26/2023]
Abstract
Humans use periodically ridged fingertips to precisely perceive the characteristics of objects via ion-based fast- and slow-adaptive mechanotransduction. However, designing artificial ionic skins with fingertip-like tactile capabilities remains challenging because of the contradiction between structural compliance and pressure sensing accuracy (e.g., anti-interference from stretch and texture recognition). Inspired by the formation and modulus-contrast hierarchical structure of fingertips, an aesthetic ionic skin grown from a non-equilibrium Liesegang patterning process is introduced. This ionic skin with periodic stiff ridges embedded in a soft hydrogel matrix enables strain-undisturbed triboelectric dynamic pressure sensing as well as vibrotactile texture recognition. By coupling with another piezoresistive ionogel, an artificial tactile sensory system is further fabricated as a soft robotic skin to mimic the simultaneous fast- and slow-adaptive multimodal sensations of fingers in grasping actions. This approach may inspire the future design of high-performance ionic tactile sensors for intelligent applications in soft robotics and prosthetics.
Collapse
Affiliation(s)
- Haiyan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
18
|
Li Y, Yu J, Wei Y, Wang Y, Feng Z, Cheng L, Huo Z, Lei Y, Sun Q. Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. SENSORS (BASEL, SWITZERLAND) 2023; 23:1329. [PMID: 36772369 PMCID: PMC9921943 DOI: 10.3390/s23031329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
With the development of 5G, artificial intelligence, and the Internet of Things, diversified sensors (such as the signal acquisition module) have become more and more important in people's daily life. According to the extensive use of various distributed wireless sensors, powering them has become a big problem. Among all the powering methods, the self-powered sensor system based on triboelectric nanogenerators (TENGs) has shown its superiority. This review focuses on four major application areas of wireless sensors based on TENG, including environmental monitoring, human monitoring, industrial production, and daily life. The perspectives and outlook of the future development of self-powered wireless sensors are discussed.
Collapse
Affiliation(s)
- Yonghai Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Wei
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Feng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Liuqi Cheng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiang Lei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qijun Sun
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Cao X, Xiong Y, Sun J, Xie X, Sun Q, Wang ZL. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. NANO-MICRO LETTERS 2022; 15:14. [PMID: 36538115 PMCID: PMC9768108 DOI: 10.1007/s40820-022-00981-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 06/02/2023]
Abstract
In the era of 5G and the Internet of things (IoTs), various human-computer interaction systems based on the integration of triboelectric nanogenerators (TENGs) and IoTs technologies demonstrate the feasibility of sustainable and self-powered functional systems. The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing, which have greatly changed the way of human production and daily life. This review mainly introduced the TENG applications in multidiscipline scenarios of IoTs, including smart agriculture, smart industry, smart city, emergency monitoring, and machine learning-assisted artificial intelligence applications. The challenges and future research directions of TENG toward IoTs have also been proposed. The extensive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.
Collapse
Affiliation(s)
- Xiaole Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yao Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jia Sun
- School of Physics and Electronics, Central South University, Changsha, 410083, People's Republic of China
| | - Xiaoyin Xie
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, People's Republic of China.
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Shandong Zhongke Naneng Energy Technology Co., Ltd., Dongying, 7061, People's Republic of China.
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|