1
|
Wang R, Tian Z, Zhu M, Zhang B, Li Y, Zheng Y, Mao Y, Zhao Y, Yang Y. SARS-CoV-2 spike protein potentiates platelet aggregation via upregulating integrin αIIbβ3 outside-in signaling pathway. J Thromb Thrombolysis 2024; 57:1225-1232. [PMID: 38981976 DOI: 10.1007/s11239-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 07/11/2024]
Abstract
Platelet hyperreactivity is one of the crucial causes of coagulative disorders in patients with COVID-19. Few studies have indicated that integrin αIIbβ3 may be a potential target for spike protein binding to platelets. This study aims to investigate whether spike protein interacts with platelet integrin αIIbβ3 and upregulates outside-in signaling to potentiate platelet aggregation. In this study, we found that spike protein significantly potentiated platelet aggregation induced by different agonists and platelet spreading in vitro. Mechanism studies revealed that spike protein upregulated the outside-in signaling, such as increased thrombin-induced phosphorylation of β3, c-Src. Moreover, using tirofiban to inhibit spike protein binding to αIIbβ3 or using PP2 to block outside-in signaling, we found that the potentiating effect of spike protein on platelet aggregation was abolished. These results demonstrate that SARS-CoV-2 spike protein directly enhances platelet aggregation via integrin αIIbβ3 outside-in signaling, and suggest a potential target for platelet hyperreactivity in patients with COVID-19. HIGHLIGHTS: • Spike protein potentiates platelet aggregation and upregulates αIIbβ3 outside-in signaling. • Spike protein interacts with integrin αIIbβ3 to potentiate platelet aggregation. • Blocking outside-in signaling abolishes the effect of spike protein on platelets.
Collapse
Affiliation(s)
- Ruijie Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Meiyan Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
| | - Bingying Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
| | - Yanzhang Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
| | - Yiqi Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China.
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China.
| |
Collapse
|
2
|
Xiong W, Chai J, Wu J, Li J, Lu W, Tian M, Jmel MA, Ippel JH, Kotsyfakis M, Dijkgraaf I, Liu S, Xu X. Cathelicidin-HG Alleviates Sepsis-Induced Platelet Dysfunction by Inhibiting GPVI-Mediated Platelet Activation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0381. [PMID: 38840901 PMCID: PMC11151873 DOI: 10.34133/research.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from Hylarana guentheri skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl3 injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.
Collapse
Affiliation(s)
- Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Maolin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Mohamed Amine Jmel
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Johannes H. Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Michail Kotsyfakis
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
- Institute of Molecular Biology and Biotechnology,
Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Wang R, Tian Z, Wang C, Zhang B, Zhu M, Yang Y. 1,25-Dihydroxyvitamin D3 attenuates platelet aggregation potentiated by SARS-CoV-2 spike protein via inhibiting integrin αIIbβ3 outside-in signaling. Cell Biochem Funct 2024; 42:e4039. [PMID: 38751189 DOI: 10.1002/cbf.4039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
Platelet hyperreactivity contributes to the pathogenesis of COVID-19, which is associated with a hypercoagulability state and thrombosis disorder. It has been demonstrated that Vitamin D deficiency is associated with the severity of COVID-19 infection. Vitamin D supplement is widely used as a dietary supplement due to its safety and health benefits. In this study, we investigated the direct effects and underlying mechanisms of 1,25(OH)2D3 on platelet hyperreactivity induced by SRAS-CoV-2 spike protein via Western blot and platelet functional studies in vitro. Firstly, we found that 1,25(OH)2D3 attenuated platelet aggregation and Src-mediated signaling. We further observed that 1,25(OH)2D3 attenuated spike protein-potentiated platelet aggregation in vitro. Mechanistically, 1,25(OH)2D3 attenuated spike protein upregulated-integrin αIIbβ3 outside-in signaling such as platelet spreading and the phosphorylation of β3, c-Src and Syk. Moreover, using PP2, the Src family kinase inhibitor to abolish spike protein-stimulated platelet aggregation and integrin αIIbβ3 outside-in signaling, the combination of PP2 and 1,25(OH)2D3 did not show additive inhibitory effects on spike protein-potentiated platelet aggregation and the phosphorylation of β3, c-Src and Syk. Thus, our data suggest that 1,25(OH)2D3 attenuates platelet aggregation potentiated by spike protein via downregulating integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Ruijie Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Caixia Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bingying Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Meiyan Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
5
|
Zhang H, Wang Z, Nguyen HTT, Watson AJ, Lao Q, Li A, Zhu J. Integrin α 5β 1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc Natl Acad Sci U S A 2023; 120:e2311913120. [PMID: 38060559 PMCID: PMC10723138 DOI: 10.1073/pnas.2311913120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects host cells by engaging its spike (S) protein with human ACE2 receptor. Recent studies suggest the involvement of integrins in SARS-CoV-2 infection through interaction with the S protein, but the underlying mechanism is not well understood. This study investigated the role of integrin α5β1, which recognizes the Arg-Gly-Asp (RGD) motif in its physiological ligands, in S-mediated virus entry and cell-cell fusion. Our results showed that α5β1 does not directly contribute to S-mediated cell entry, but it enhances S-mediated cell-cell fusion in collaboration with ACE2. This effect cannot be inhibited by the putative α5β1 inhibitor ATN-161 or the high-affinity RGD-mimetic inhibitor MK-0429 but requires the participation of α5 cytoplasmic tail (CT). We detected a direct interaction between α5β1 and the S protein, but this interaction does not rely on the RGD-containing receptor binding domain of the S1 subunit of the S protein. Instead, it involves the S2 subunit of the S protein and α5β1 homo-oligomerization. Furthermore, we found that the S protein induces inflammatory responses in human endothelial cells, characterized by NF-κB activation, gasdermin D cleavage, and increased secretion of proinflammatory cytokines IL-6 and IL-1β. These effects can be attenuated by the loss of α5 expression or inhibition of the α5 CT binding protein phosphodiesterase-4D (PDE4D), suggesting the involvement of α5 CT and PDE4D pathway. These findings provide molecular insights into the pathogenesis of SARS-CoV-2 mediated by a nonclassical RGD-independent ligand-binding and signaling function of integrin α5β1 and suggest potential targets for antiviral treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Zhengli Wang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Huong T. T. Nguyen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Abigail J. Watson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Qifang Lao
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - An Li
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI53226
| |
Collapse
|
6
|
Panteleev MA, Sveshnikova AN, Shakhidzhanov SS, Zamaraev AV, Ataullakhanov FI, Rumyantsev AG. The Ways of the Virus: Interactions of Platelets and Red Blood Cells with SARS-CoV-2, and Their Potential Pathophysiological Significance in COVID-19. Int J Mol Sci 2023; 24:17291. [PMID: 38139118 PMCID: PMC10743882 DOI: 10.3390/ijms242417291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The hematological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important in COVID-19 pathophysiology. However, the interactions of SARS-CoV-2 with platelets and red blood cells are still poorly understood. There are conflicting data regarding the mechanisms and significance of these interactions. The aim of this review is to put together available data and discuss hypotheses, the known and suspected effects of the virus on these blood cells, their pathophysiological and diagnostic significance, and the potential role of platelets and red blood cells in the virus's transport, propagation, and clearance by the immune system. We pay particular attention to the mutual activation of platelets, the immune system, the endothelium, and blood coagulation and how this changes with the evolution of SARS-CoV-2. There is now convincing evidence that platelets, along with platelet and erythroid precursors (but not mature erythrocytes), are frequently infected by SARS-CoV-2 and functionally changed. The mechanisms of infection of these cells and their role are not yet entirely clear. Still, the changes in platelets and red blood cells in COVID-19 are significantly associated with disease severity and are likely to have prognostic and pathophysiological significance in the development of thrombotic and pulmonary complications.
Collapse
Affiliation(s)
- Mikhail A. Panteleev
- Department of Medical Physics, Physics Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Faculty of Fundamental Physics and Chemical Engineering, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Soslan S. Shakhidzhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Alexey V. Zamaraev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Ulitsa Vavilova, 119991 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Fazoil I. Ataullakhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Aleksandr G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
| |
Collapse
|
7
|
Li J, Karakas D, Xue F, Chen Y, Zhu G, Yucel YH, MacParland SA, Zhang H, Semple JW, Freedman J, Shi Q, Ni H. Desialylated Platelet Clearance in the Liver is a Novel Mechanism of Systemic Immunosuppression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0236. [PMID: 37808178 PMCID: PMC10551749 DOI: 10.34133/research.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.
Collapse
Affiliation(s)
- June Li
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Feng Xue
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yingyu Chen
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Yeni H. Yucel
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Ophthalmology and Vision Sciences Medicine,
University of Toronto, Toronto, ON, Canada
- Faculty of Engineering and Architectural Science,
Ryerson University, Toronto, ON, Canada
| | - Sonya A. MacParland
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program,
Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology,
University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Critical Care Medicine, Department of Anesthesiology and Pain,
University of Toronto, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - John W. Semple
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Pharmacology,
University of Toronto, Toronto, ON, Canada
- Division of Hematology and Transfusion Medicine,
Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine,
Office of Medical Services, Region Skåne, Lund, Sweden
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| | - Qizhen Shi
- Departments of Pediatrics,
Medical College of Wisconsin, Milwaukee, WI, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Wisconsin, Wauwatosa, WI, USA
- Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|