1
|
Wu ZQ, Liu YM, Cheng QD, Li CY, Liu YL, Ge WY, Falke S, Brognaro H, Chen JJ, Zhou H, Shang P, He JH, Betzel C, Yin DC. Growing a single suspended perfect protein crystal in a fully noncontact manner. Int J Biol Macromol 2024; 282:136637. [PMID: 39481732 DOI: 10.1016/j.ijbiomac.2024.136637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Nucleation is a fundamental process that determines the structure, morphology, and properties of crystalline materials, and is difficult to control because it is unpredictable. Here, we demonstrate a new method to control the protein crystal nucleation using a magnetic force, where we manipulate the movement and coalescence of nucleation precursors by adding paramagnetic salt into the crystallization solution to constrain the number and position of nucleation. We found that protein nucleation could be significantly affected by the magnetic force that the gradient magnetic fields generate. When the magnetization force is sufficiently enough, nucleation can be confined to the crystallization solution with no interface contact; therefore, only one crystal nucleus appears, which results in noncontact suspension growth of a single crystal in the crystallization solution system. Under these situations, the nucleation rate significantly decreases due to the coalescence of the dense liquid phase, and the crystal growth rate also decreases due to the suppression of convection, which increases the crystal quality. Our findings provide a new method for the noncontact control of crystal nucleation and demonstrate that externally applied physical environments can be used to affect the liquid-liquid phase separation process.
Collapse
Affiliation(s)
- Zi-Qing Wu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; School of Education and Music, Sanming University, Sanming 365004, Fujian, China
| | - Yong-Ming Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; School of Education and Music, Sanming University, Sanming 365004, Fujian, China
| | - Qing-Di Cheng
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany
| | - Chen-Yuan Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Ya-Li Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Sven Falke
- Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany
| | - Hevila Brognaro
- Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany
| | - Jing-Jie Chen
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Christian Betzel
- Laboratory for Structural Biology of Infection & Inflammation, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg 22607, Germany.
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| |
Collapse
|
2
|
Wang C, Zhang L, Shang L. Compartmentalized Biomolecular Condensates via Controlled Nucleation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0505. [PMID: 39421214 PMCID: PMC11483777 DOI: 10.34133/research.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
This commentary underscores the importance and implications of the study "Biomolecular condensates with complex architectures via controlled nucleation," led by Jan C. M. van Hest and Tuomas P. J. Knowles, published in Nature Chemical Engineering. The research team developed a novel system to investigate the structure of biological condensates using quaternized amylose, carboxymethylated amylose, and single-stranded DNA. They successfully created multiphase droplets with distinct dense phases and demonstrated that droplet architecture can be controlled through temperature and salt concentration adjustments. This study offers valuable insights into the formation and function of membraneless organelles in cells and suggests promising applications for designing biomimetic materials and therapeutic strategies.
Collapse
Affiliation(s)
- Chong Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| | - Linyi Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences,
Fudan University, Shanghai, China
| |
Collapse
|
3
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
4
|
Zhang G, Yu T, Chai X, Zhang S, Liu J, Zhou Y, Yin D, Zhang C. Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0320. [PMID: 38420580 PMCID: PMC10900498 DOI: 10.34133/research.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal malignancy in women, with a lack of effective targeted drugs and treatment techniques. Gradient rotating magnetic field (RMF) is a new technology used in oncology physiotherapy, showing promising clinical applications due to its satisfactory biosafety and the abundant mechanical force stimuli it provides. However, its antitumor effects and underlying molecular mechanisms are not yet clear. We designed two sets of gradient RMF devices for cell culture and animal handling. Gradient RMF exposure had a notable impact on the F-actin arrangement of MDA-MB-231, BT-549, and MDA-MB-468 cells, inhibiting cell migration and invasion. A potential cytoskeleton F-actin-associated gene, CCDC150, was found to be enriched in clinical TNBC tumors and cells. CCDC150 negatively correlated with the overall survival rate of TNBC patients. CCDC150 promoted TNBC migration and invasion via activation of the transforming growth factor β1 (TGF-β1)/SMAD3 signaling pathway in vitro and in vivo. CCDC150 was also identified as a magnetic field response gene, and it was marked down-regulated after gradient RMF exposure. CCDC150 silencing and gradient RMF exposure both suppressed TNBC tumor growth and liver metastasis. Therefore, gradient RMF exposure may be an effective TNBC treatment, and CCDC150 may emerge as a potential target for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
5
|
Cai Z, Mei S, Zhou L, Ma X, Wuyun Q, Yan J, Ding H. Liquid-Liquid Phase Separation Sheds New Light upon Cardiovascular Diseases. Int J Mol Sci 2023; 24:15418. [PMID: 37895097 PMCID: PMC10607581 DOI: 10.3390/ijms242015418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and perform specific functions. Biomolecular condensates have been observed to organize diverse key biological processes, including gene transcription, signal transduction, DNA damage repair, chromatin organization, and autophagy. The dysregulation of these biological activities owing to aberrant LLPS is important in cardiovascular diseases. This review provides a detailed overview of the regulation and functions of biomolecular condensates, provides a comprehensive depiction of LLPS in several common cardiovascular diseases, and discusses the revolutionary therapeutic perspective of modulating LLPS in cardiovascular diseases and new treatment strategies relevant to LLPS.
Collapse
Affiliation(s)
- Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|