1
|
Dahlberg P, Axelsson KJ, Rydberg A, Lundahl G, Gransberg L, Bergfeldt L. Spatiotemporal repolarization dispersion before and after exercise in patients with long QT syndrome type 1 versus controls: probing into the arrhythmia substrate. Am J Physiol Heart Circ Physiol 2023; 325:H1279-H1289. [PMID: 37773058 DOI: 10.1152/ajpheart.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Congenital long QT syndrome (LQTS) carries an increased risk for syncope and sudden death. QT prolongation promotes ventricular extrasystoles, which, in the presence of an arrhythmia substrate, might trigger ventricular tachycardia degenerating into fibrillation. Increased electrical heterogeneity (dispersion) is the suggested arrhythmia substrate in LQTS. In the most common subtype LQT1, physical exercise predisposes for arrhythmia and spatiotemporal dispersion was therefore studied in this context. Thirty-seven patients (57% on β-blockers) and 37 healthy controls (mean age, 31 vs. 35; range, 6-68 vs. 6-72 yr) performed an exercise test. Frank vectorcardiography was used to assess spatiotemporal dispersion as Tampl, Tarea, the ventricular gradient (VG), and the Tpeak-end interval from 10-s signal averages before and 7 ± 2 min after exercise; during exercise too much signal disturbance excluded analysis. Baseline and maximum heart rates as well as estimated exercise intensity were similar, but heart rate recovery was slower in patients. At baseline, QT and heart rate-corrected QT (QTcB) were significantly longer in patients (as expected), whereas dispersion parameters were numerically larger in controls. After exercise, QTpeakcB and Tpeak-endcB increased significantly more in patients (18 ± 23 vs. 7 ± 10 ms and 12 ± 17 vs. 2 ± 6 ms; P < 0.001 and P < 0.01). There was, however, no difference in the change in Tampl, Tarea, and VG between groups. In conclusion, although temporal dispersion of repolarization increased significantly more after exercise in patients with LQT1, there were no signs of exercise-induced increase in global dispersion of action potential duration and morphology. The arrhythmia substrate/mechanism in LQT1 warrants further study.NEW & NOTEWORTHY Physical activity increases the risk for life-threatening arrhythmias in LQTS type 1 (LQT1). The arrhythmia substrate is presumably altered electrical heterogeneity (a.k.a. dispersion). Spatiotemporal dispersion parameters were therefore compared before and after exercise in patients versus healthy controls using Frank vectorcardiography, a novelty. Physical exercise prolonged the time between the earliest and latest complete repolarization in patients versus controls, but did not increase parameters reflecting global dispersion of action potential duration and morphology, another novelty.
Collapse
Affiliation(s)
- Pia Dahlberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karl-Jonas Axelsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Rydberg
- Division of Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Axelsson KJ, Gransberg L, Lundahl G, Bergfeldt L. Adaptation of ventricular repolarization dispersion during heart rate increase in humans: A roller coaster process. J Electrocardiol 2021; 68:90-100. [PMID: 34411881 DOI: 10.1016/j.jelectrocard.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/10/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Regional differences in ventricular activation sequence and action potential duration and morphology result in dispersion in ventricular repolarization (VR). VR dispersion is a key factor in arrhythmogenesis. We studied the adaptation of global VR dispersion in humans during normal and abnormal ventricular activation, and the relation to the QT adaptation (hysteresis). METHODS We measured global VR dispersion as T amplitude, T area, and ventricular gradient (VG), using continuous Frank vectorcardiography, in response to abrupt and sustained atrial (AP) or ventricular pacing (VP) aiming at 120 bpm, in 21 subjects with permanent pacemakers. RESULTS Following pacing start, VR adaptation showed an initially rapid and complex tri-phasic pattern, most pronounced for T amplitude. There were major differences in the patterns of VR dispersion adaptation following abrupt AP vs VP, confirming that the adaptation pattern is activation dependent. In response to AP, an instantaneous decrease in VR dispersion occurred, followed by an increase and then a slow decrease, all at a lower level than baseline. In contrast, following VP there was an immediate increase to ~4× baseline in T amplitude and T area (but not in VG), with a subsequent biphasic adaptation lasting longer during VP than AP. The initial rapid changes occurred within the time for QT adaptation to reach steady-state. CONCLUSIONS Our results corroborate and expand data from animal and invasive human studies, showing similarities of the adaptation pattern on different scales. The initial rapidly changing VR adaptation phase presumably reflects a window of increased vulnerability to arrhythmias.
Collapse
Affiliation(s)
- Karl-Jonas Axelsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Reiffel JA. Antiarrhythmic Drugs for Atrial Fibrillation: Selected Features of Ventricular Repolarization That Facilitate Proarrhythmic Torsades de Pointes and Favor Inpatient Initiation. J Innov Card Rhythm Manag 2021; 12:4600-4605. [PMID: 34327046 PMCID: PMC8313184 DOI: 10.19102/icrm.2021.120704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
The management approaches to patients with atrial fibrillation (AF) include rhythm-control strategies for those patients who are symptomatic despite rate control and for selected others in whom sinus rhythm is necessary for reasons beyond current symptoms (including commercial pilots, those who are felt likely to develop symptoms as comorbidities progress, and more). First-line therapies among the rhythm-control options are antiarrhythmic drugs (AADs). For many AADs, their initiation in-hospital is either a requirement or strongly advised- especially when the patient is in AF. This article explores some of the rationale behind this requirement to give clinicians a better understanding of the reasons for this undesired inconvenience.
Collapse
|
4
|
Axelsson KJ, Gransberg L, Lundahl G, Vahedi F, Bergfeldt L. Adaptation of ventricular repolarization time following abrupt changes in heart rate: comparisons and reproducibility of repeated atrial and ventricular pacing. Am J Physiol Heart Circ Physiol 2020; 320:H381-H392. [PMID: 33164576 DOI: 10.1152/ajpheart.00542.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adequate adaptation of ventricular repolarization (VR) duration to changes in heart rate (HR) is important for cardiac electromechanical function and electrical stability. We studied the QT and QTpeak adaptation in response to abrupt start and stop of atrial and ventricular pacing on two occasions with an interval of at least 1 mo in 25 study subjects with permanent pacemakers. Frank vectorcardiography was used for data collection. Atrial or ventricular pacing was performed for 8 min aiming at a cycle length (CL) of 500 ms. We measured the immediate response (IR), the time constant (τ) of the exponential phase, and T90 End, the time to reach 90% change of QT and QTpeak from baseline to steady state during and after pacing. During atrial pacing, the CL decreased on average 45% from mean (SD) 944 (120) to 518 (46) ms and QT decreased on average 18% from 388 (20) to 318 (17) ms. For QT, T90 End was 103 (24) s and 126 (15) s after start versus stop of atrial pacing; a difference of 24 (27) s (P = 0.006). The response pattern was similar for τ but IR did not differ significantly between pacing start and stop. The response pattern was similar for QTpeak and also for QT and QTpeak following ventricular pacing start and stop. The coefficients of variation for repeated measures were 7%-21% for T90 End and τ. In conclusion, the adaptation of VR duration was significantly more rapid following increasing than decreasing HR and intraindividually a relatively reproducible process.NEW & NOTEWORTHY We studied the duration of ventricular repolarization (VR) adaptation and its hysteresis, following increasing and decreasing heart rate by abrupt start and stop of 8-min atrial or ventricular pacing in study subjects with permanent pacemakers and repeated the protocol with ≥1 mo interval, a novel approach. VR adaptation was significantly longer following decreasing than increasing heart rate corroborating previous observations. Furthermore, VR adaptation was intraindividually a reproducible and, hence, robust phenomenon, a novel finding.
Collapse
Affiliation(s)
- Karl-Jonas Axelsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg Sweden
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Farzad Vahedi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg Sweden
| |
Collapse
|
5
|
Axelsson KJ, Brännlund A, Gransberg L, Lundahl G, Vahedi F, Bergfeldt L. Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation. Ann Noninvasive Electrocardiol 2019; 25:e12713. [PMID: 31707762 PMCID: PMC7358894 DOI: 10.1111/anec.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The duration of ventricular repolarization (VR) and its spatial and temporal heterogeneity are central elements in arrhythmogenesis. We studied the adaptation of VR duration and dispersion and their relationship in healthy human subjects during atrial pacing. METHODS Patients 20-50 years of age who were scheduled for ablation of supraventricular tachycardia without preexcitation but otherwise healthy were eligible. Vectorcardiography recordings with Frank leads were used for data collection. Incremental atrial pacing from a coronary sinus electrode was performed by decrements of 10ms/cycle from just above sinus rate, and then kept at a fixed heart rate (HR) just below the Wenckebach rate for ≥5min and then stopped. VR duration was measured as QT and VR dispersion as T area, T amplitude and ventricular gradient. The primary measure (T90 End) was the time to reach 90% change from baseline to the steady state value during and after pacing. RESULTS A complete study protocol was accomplished in 9 individuals (6 women). VR duration displayed a monophasic adaptation during HR acceleration lasting on average 20s. The median (Q1-Q3) T90 End for QT was 85s (51-104), a delay by a factor >4. All dispersion measures displayed a tri-phasic response pattern during HR acceleration and T90 End was 3-5 times shorter than for VR duration. CONCLUSIONS Even during close to "physiological" conditions, complex and differing response patterns in VR duration and dispersion measures followed changes in HR. Extended knowledge about these responses in disease conditions might assist in risk evaluation and finding therapeutic alternatives.
Collapse
Affiliation(s)
- Karl-Jonas Axelsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adam Brännlund
- Department of Anesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Farzad Vahedi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Porter B, Bishop MJ, Claridge S, Child N, Van Duijvenboden S, Bostock J, Sieniewicz BJ, Gould J, Sidhu B, Hanson B, Chen Z, Rinaldi CA, Taggart P, Gill JS. Left ventricular activation-recovery interval variability predicts spontaneous ventricular tachyarrhythmia in patients with heart failure. Heart Rhythm 2019; 16:702-709. [DOI: 10.1016/j.hrthm.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 01/01/2023]
|
7
|
Porter B, van Duijvenboden S, Bishop MJ, Orini M, Claridge S, Gould J, Sieniewicz BJ, Sidhu B, Razavi R, Rinaldi CA, Gill JS, Taggart P. Beat-to-Beat Variability of Ventricular Action Potential Duration Oscillates at Low Frequency During Sympathetic Provocation in Humans. Front Physiol 2018; 9:147. [PMID: 29670531 PMCID: PMC5893843 DOI: 10.3389/fphys.2018.00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/13/2018] [Indexed: 01/22/2023] Open
Abstract
Background: The temporal pattern of ventricular repolarization is of critical importance in arrhythmogenesis. Enhanced beat-to-beat variability (BBV) of ventricular action potential duration (APD) is pro-arrhythmic and is increased during sympathetic provocation. Since sympathetic nerve activity characteristically exhibits burst patterning in the low frequency range, we hypothesized that physiologically enhanced sympathetic activity may not only increase BBV of left ventricular APD but also impose a low frequency oscillation which further increases repolarization instability in humans. Methods and Results: Heart failure patients with cardiac resynchronization therapy defibrillator devices (n = 11) had activation recovery intervals (ARI, surrogate for APD) recorded from left ventricular epicardial electrodes alongside simultaneous non-invasive blood pressure and respiratory recordings. Fixed cycle length was achieved by right ventricular pacing. Recordings took place during resting conditions and following an autonomic stimulus (Valsalva). The variability of ARI and the normalized variability of ARI showed significant increases post Valsalva when compared to control (p = 0.019 and p = 0.032, respectively). The oscillatory behavior was quantified by spectral analysis. Significant increases in low frequency (LF) power (p = 0.002) and normalized LF power (p = 0.019) of ARI were seen following Valsalva. The Valsalva did not induce changes in conduction variability nor the LF oscillatory behavior of conduction. However, increases in the LF power of ARI were accompanied by increases in the LF power of systolic blood pressure (SBP) and the rate of systolic pressure increase (dP/dtmax). Positive correlations were found between LF-SBP and LF-dP/dtmax (rs = 0.933, p < 0.001), LF-ARI and LF-SBP (rs = 0.681, p = 0.001) and between LF-ARI and LF-dP/dtmax (rs = 0.623, p = 0.004). There was a strong positive correlation between the variability of ARI and LF power of ARI (rs = 0.679, p < 0.001). Conclusions: In heart failure patients, physiological sympathetic provocation induced low frequency oscillation (~0.1 Hz) of left ventricular APD with a strong positive correlation between the LF power of APD and the BBV of APD. These findings may be of importance in mechanisms underlying stability/instability of repolarization and arrhythmogenesis in humans.
Collapse
Affiliation(s)
- Bradley Porter
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | | | - Martin J. Bishop
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | - Michele Orini
- Guy's and St Thomas' Hospital, London, United Kingdom
| | - Simon Claridge
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | - Justin Gould
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | - Benjamin J. Sieniewicz
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | - Baldeep Sidhu
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | - Reza Razavi
- Department of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom
| | - Christopher A. Rinaldi
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Jaswinder S. Gill
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Peter Taggart
- Guy's and St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
8
|
Gravel H, Jacquemet V, Dahdah N, Curnier D. Clinical applications of QT/RR hysteresis assessment: A systematic review. Ann Noninvasive Electrocardiol 2017; 23. [PMID: 29083088 DOI: 10.1111/anec.12514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND QT/RR hysteresis (QT-hys) is an index of the time accommodation of ventricular repolarization to heart rate changes. This report comprehensively reviews studies addressing QT-hys as a biomarker of medical conditions. METHODS This is a secondary analysis of data from a recent systematic review pertaining to methods of assessment of QT-hys. Articles included in the former review were filtered in order to select original articles investigating the association of QT-hys with medical conditions in humans. RESULTS Nineteen articles fulfilled our inclusion criteria. Given the heterogeneity of the methods and investigated conditions, no pooled analysis of data could be implemented. QT-hys was mostly studied as a risk marker of severe arrhythmias, as a predictor of the long QT syndrome (LQTS) phenotypes and genotypes and as a marker of exercise-induced ischemia. An increased QT-hys appears to be implicated in arrhythmogenesis, although the evidence in this regard relies on few human studies. An augmented QT-hys was reported in the LQTS, predominantly in the LQT2 genotype, but conflicting results were obtained between studies using different methods of assessment. In addition, QT-hys appears to be a useful marker of stress-induced myocardial ischemia in patients suspected of coronary artery disease. CONCLUSIONS QT-hys evaluation has potential clinical utility in at least some clinical conditions. Further studies of the clinical validity of QT-hys assessment are warranted, particularly condition specific studies based on QT-hys evaluation methods that provide separate estimates of QT-hys and QT/RR dependency.
Collapse
Affiliation(s)
- Hugo Gravel
- Department of Kinesiology, University of Montreal, Montreal, QC, Canada
| | - Vincent Jacquemet
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Nagib Dahdah
- Division of Pediatric Cardiology and CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal, QC, Canada
| | - Daniel Curnier
- Department of Kinesiology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Comlekoglu T, Weinberg SH. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity. CHAOS (WOODBURY, N.Y.) 2017; 27:093904. [PMID: 28964143 DOI: 10.1063/1.4999351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Collapse
Affiliation(s)
- T Comlekoglu
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| | - S H Weinberg
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| |
Collapse
|
10
|
Bergfeldt L, Lundahl G, Bergqvist G, Vahedi F, Gransberg L. Ventricular repolarization duration and dispersion adaptation after atropine induced rapid heart rate increase in healthy adults. J Electrocardiol 2017; 50:424-432. [DOI: 10.1016/j.jelectrocard.2017.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/16/2022]
|
11
|
Chen Z, Hanson B, Sohal M, Sammut E, Jackson T, Child N, Claridge S, Behar J, Niederer S, Gill J, Carr-White G, Razavi R, Rinaldi CA, Taggart P. Coupling of ventricular action potential duration and local strain patterns during reverse remodeling in responders and nonresponders to cardiac resynchronization therapy. Heart Rhythm 2016; 13:1898-904. [PMID: 27301781 DOI: 10.1016/j.hrthm.2016.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 10/21/2022]
Abstract
BACKGROUND The high risk of ventricular arrhythmias in patients with heart failure remains despite the benefit of cardiac resynchronization therapy (CRT). An electromechanical interaction between regional myocardial strain patterns and the electrophysiological substrate is thought to be important. OBJECTIVE We investigated the in vivo relation between left ventricular activation recovery interval (ARI), as a surrogate measure of action potential duration (APD), and local myocardial strain patterns in responders and nonresponders to CRT. METHODS ARIs were recorded from the left ventricular epicardium in 20 patients with CRT 6 weeks and 6 months post implantation. Two-dimensional speckle tracking echocardiography was performed at the same time to assess myocardial strains. Patients with ≥15% reduction in end-systolic volume at 6 months were classified as responders. RESULTS ARI decreased in responders (263 ± 46 ms vs 246 ± 47 ms, P < .01) and increased in nonresponders (235 ± 23 ms vs 261 ± 20 ms; P < .01). Time-to-peak radial, circumferential, and longitudinal strains increased in responders (41 ± 27, 35 ± 25, 56 ± 37 ms; P < .01) and decreased in nonresponders (-58 ± 26, -47 ± 26, -64 ± 27 ms; P < .01). There was a nonlinear correlation between changes in time-to-peak strain and ARIs (Spearman correlation coefficient r ≥ 0.70; P < .01). Baseline QRS duration >145 ms and QRS duration shortening with biventricular pacing were associated with ARI shortening following CRT. CONCLUSION Changes in ventricular wall mechanics predict local APD lengthening or shortening during CRT. Nonresponders have a worsening of myocardial strain and local APD. Baseline QRS duration >145 ms and QRS duration shortening with biventricular pacing identified patients who exhibited improvement in APD.
Collapse
Affiliation(s)
- Zhong Chen
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom,.
| | - Ben Hanson
- University College London, London, United Kingdom
| | - Manav Sohal
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Eva Sammut
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Tom Jackson
- King's College London, London, United Kingdom
| | - Nicholas Child
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Simon Claridge
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Jonathan Behar
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | | | - Jaswinder Gill
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Gerald Carr-White
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Reza Razavi
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - C Aldo Rinaldi
- King's College London, London, United Kingdom; Guy's and St Thomas' NHS Trust, London, United Kingdom
| | | |
Collapse
|
12
|
Osadchii OE. Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart. SCAND CARDIOVASC J 2015; 50:28-35. [DOI: 10.3109/14017431.2015.1099721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| |
Collapse
|
13
|
Yana K, Cerutti S, Mainardi L, Yamamoto Y. Biosignal interpretation I. Advanced methods for studying cardiovascular and respiratory systems. Methods Inf Med 2014; 53:284-5. [PMID: 25109424 DOI: 10.3414/me14-10-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K Yana
- Kazuo Yana, Department of Applied Informatics, Hosei University, Tokyo, Japan, E-mail:
| | | | | | | |
Collapse
|