1
|
Ali SMA, Khan J, Shahid R, Shabbir S, Ayoob MF, Imran M. Chitosan-carrageenan microbeads containing nano-encapsulated curcumin: Nano-in-micro hydrogels as alternative-therapeutics for resistant pathogens associated with chronic wounds. Int J Biol Macromol 2024; 278:134841. [PMID: 39209593 DOI: 10.1016/j.ijbiomac.2024.134841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance is an issue of global relevance for the treatment of chronic wound infections. In this study, nano-in-micro hydrogels (microbeads) of chitosan and κ-carrageenan (CCMBs) containing curcumin-loaded rhamnosomes (Cur-R) were developed. The potential of Cur-R-CCMBs for improving the antibacterial activity and sustained release of curcumin was evaluated. Curcumin-loaded rhamnosomes (rhamnolipids functionalized liposomes) had a mean particle size of 116 ± 7 nm and a surface-charge of -24.5 ± 9.4 mV. The encapsulation efficiency of curcumin increased from 42.83 % ± 0.69 % in Cur-R to 95.24 % ± 3.61 % respectively after their embedding in CCMBs. SEM revealed smooth surface morphology of Cur-R-CCMBs. FTIR spectroscopy confirmed the presence of weak electrostatic and hydrophobic interactions among curcumin, rhamnosomes, and microbeads. Cur-R-CCMBs had demonstrated significant antibacterial activity against multi-drug resistant chronic wound pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. Cur-R-CCMBs also exhibited significantly higher anti-oxidant (76.85 % ± 2.12 %) and anti-inflammatory activity (91.94 % ± 0.41 %) as well as hemocompatibility (4.024 % ± 0.59 %) as compared to pristine microbeads. In vivo infection model of mice revealed significant reduction in the viable bacterial count of S. aureus (∼2.5 log CFU/mL) and P. aeruginosa (∼2 log CFU/mL) for Cur-R-CCMBs after 5 days. Therefore, nano-in-micro hydrogels can improve the overall efficacy of hydrophobic antimicrobials to develop effective alternative-therapeutics against resistant-pathogens associated with chronic wound infections.
Collapse
Affiliation(s)
| | - Javeria Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biochemistry, Faculty of Biomedical & Life Sciences, Kohsar University Murree (KUM), Murree 47150, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Faisal Ayoob
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
2
|
Singh CP, Rai PK, Kumar M, Tiwari V, Tiwari A, Sharma A, Sharma K. Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics. Pharm Nanotechnol 2024; 12:126-142. [PMID: 37519002 DOI: 10.2174/2211738511666230727102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Drug distribution to the eye is still tricky because of the eye's intricate structure. Systemic delivery, as opposed to more traditional methods like eye drops and ointments, is more effective but higher doses can be harmful. OBJECTIVE The use of solid lipid nanoparticles (SLNPs) as a method of drug delivery has been the subject of research since the 1990s. Since SLNPs are derived from naturally occurring lipids, they pose no health risks to the user. To raise the eye's absorption of hydrophilic and lipophilic drugs, SLNs can promote corneal absorption and improve the ocular bioavailability of SLNPs. METHODS To address problems related to ocular drug delivery, many forms of nano formulation were developed. Some of the methods developed are, emulsification and ultra-sonication, high-speed stirring and ultra-sonication, thin layer hydration, adapted melt-emulsification, and ultrasonication techniques, hot o/w micro-emulsion techniques, etc. Results: Nanostructured lipid carriers are described in this review in terms of their ocular penetration mechanism, structural characteristic, manufacturing process, characterization, and advantages over other nanocarriers. CONCLUSION Recent developments in ocular formulations with nanostructured bases, such as surfacemodified attempts have been made to increase ocular bioavailability in both the anterior and posterior chambers by incorporating cationic chemicals into a wide variety of polymeric systems.
Collapse
Affiliation(s)
- Chandra Pratap Singh
- Usha college of Pharmacy & Medical Sciences, Vijaygaon, Ambedkar Nagar, 224122, UP, India
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Pankaj Kumar Rai
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Kamini Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
3
|
Louisa M, Wanafri E, Arozal W, Sandhiutami NMD, Basalamah AM. Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats. PHARMACEUTICAL BIOLOGY 2023; 61:298-305. [PMID: 36708211 PMCID: PMC9888479 DOI: 10.1080/13880209.2023.2166965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Cisplatin, as a first-line treatment for ovarian cancer, is associated with debilitating adverse effects, including nephrotoxic and haematotoxic effects. OBJECTIVE This study determines whether nanocurcumin, combined with cisplatin, would give additional benefit to kidney function and haematological parameters in rats with ovarian cancer. MATERIALS AND METHODS Twenty-five Wistar rats were divided into five untreated rats and 20-dimethylbenz(a)anthracene (DMBA)-induced ovarian cancer rats. The 20 ovarian cancer rats were divided into four treatment groups: vehicle, cisplatin, cisplatin-curcumin, and cisplatin-nanocurcumin. Cisplatin was given at the dose of 4 mg/kg BW once weekly, while curcumin or nanocurcumin was administered at 100 mg/kg BW daily for four weeks. At the end of treatment, we analysed kidney function, haematological parameters, and inflammatory and oxidative stress markers from plasma. RESULTS Nanocurcumin alleviates the increase in kidney function markers and abnormalities in haematological indices in rats treated with cisplatin. Compared to cisplatin-treated rats, plasma urea levels decreased from 66.4 to 47.7 mg/dL, creatinine levels lowered from 0.87 to 0.82 mg/dL, and neutrophil gelatinase-associated lipocalin (NGAL) levels declined from 8.51 to 3.59 mIU/mg protein. Furthermore, the therapy increased glutathione activities (from 2.02 to 3.23 U/µL), reduced lipid peroxidation (from 0.54 to 0.45 nmol/mL), and decreased plasma TNF-α (from 270.6 to 217.8 pg/mL). CONCLUSIONS Cisplatin with nanocurcumin in an ovarian cancer rat model may provide additional benefits as a preventive agent against renal impairment and cisplatin-induced haematological toxicity. However, further research is required to prove that using nanocurcumin for a more extended time would not affect its anticancer properties.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erico Wanafri
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | |
Collapse
|
4
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Kumbhar S, Khairate R, Bhatia M, Choudhari P, Gaikwad V. Evaluation of curcumin-loaded chitosan nanoparticles for wound healing activity. ADMET AND DMPK 2023; 11:601-613. [PMID: 37937244 PMCID: PMC10626514 DOI: 10.5599/admet.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/14/2023] [Indexed: 11/09/2023] Open
Abstract
Background and purpose Wound healing is a biological process that can be difficult to manage clinically. In skin wound healing, the interaction of many cells, growth factors, and cytokines reveals an outstanding biological function mechanism. Wound healing that occurs naturally restores tissue integrity, however, it is usually restricted to wound repair. Curcumin synthesised in a chitosan matrix can be used to heal skin sores. Experimental approach The ionotropic gelation procedure required crosslinking chitosan with a tripolyphosphate (TPP) crosslinker to generate curcumin nanoparticles encapsulated in chitosan. Key results The nanoparticles were between 200 and 400 nm in size, with a strong positive surface charge and good entrapment efficacy, according to SEM and TEM investigations. Curcumin and chitosan compatibility was investigated using FTIR spectroscopy. All batches showed consistent drug release, with the F5 batch having the highest curcumin release, at 75% after 16 hours. On L929 cells, scratch assays were utilised to assess wound healing. Wound closure with widths of 59 and 65 mm with curcumin and 45 and 78 mm with curcumin-loaded chitosan nanoparticles was seen after 24 and 48 hours of examination. Conclusions According to the findings, prepared curcumin chitosan nanoparticles are beneficial in healing skin damage.
Collapse
Affiliation(s)
- Smita Kumbhar
- Department of Pharmaceutical Analysis, DSTS Mandal’s College of Pharmacy, Solapur, India
| | - Rupali Khairate
- Department of Pharmaceutical Analysis, DSTS Mandal’s College of Pharmacy, Solapur, India
| | - Manish Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Vinod Gaikwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| |
Collapse
|
6
|
Weng J, Durand A, Desobry S. Chitosan-Based Particulate Carriers: Structure, Production and Corresponding Controlled Release. Pharmaceutics 2023; 15:1455. [PMID: 37242694 PMCID: PMC10221392 DOI: 10.3390/pharmaceutics15051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of release are detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely, the relationship between the size/structure of CS-based particles as multifunctional delivery systems and drug release kinetics (models) is emphasized. The preparation method and conditions greatly influence particle structure and size, which affect release properties. Various techniques available for characterizing particle structural properties and size distribution are reviewed. CS particulate carriers with different structures can achieve various release patterns, including zero-order, multi-pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding release mechanisms and their interrelationships. Moreover, models help identify the key structural characteristics, thus saving experimental time. Furthermore, by investigating the close relation between preparation process parameters and particulate structural characteristics as well as their effect on release properties, a novel "on-demand" strategy for the design of drug delivery devices may be developed. This reverse strategy involves designing the production process and the related particles' structure based on the targeted release pattern.
Collapse
Affiliation(s)
- Jiaqi Weng
- Université de Lorraine, LIBio, F-54000 Nancy, France;
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | | |
Collapse
|
7
|
Sandhiutami NMD, Dewi RS, Khairani S, Putri RNA. Enhancement of curcumin level and hepatoprotective effect in rats through antioxidant activity following modification into nanosized particles. Vet World 2022; 15:2323-2332. [PMID: 36341064 PMCID: PMC9631365 DOI: 10.14202/vetworld.2022.2323-2332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aim: Developing curcumin into nanosized particles is one of the approaches to overcome the limited use of curcumin. This study aimed to prepare curcumin into nanosized particles to increase the curcumin level in the rat’s liver and hepatoprotective effect in rats. Materials and Methods: Curcumin into nanosized particles formulated using ionic gelation method. Rats were divided into four groups (n = 6): Normal, negative, curcumin, and curcumin modified into nanosized particles were treated with 100 mg/kg body weight orally for 14 days. Hepatic curcumin level was investigated using liquid chromatography with tandem mass spectrometry, antioxidant activity by malondialdehyde (MDA), and hepatoprotective effect by aspartate transaminase (AST), alanine transaminase (ALT), and histopathology. Results: The curcumin level in the rat’s liver in the curcumin group was 12.19 ng/mL, and that in those receiving modified into nanosized curcumin was 209.36 ng/mL. The MDA levels in the normal, negative, curcumin, and curcumin modified into nanosized particles groups were 1.88, 4.87, 3.38, and 1.04 nmol/L, respectively. The AST levels in these groups were 57.12, 130.00, 102.13, and 74.28 IU/L, and the ALT levels were 21.63, 61.97, 39.38, and 28.55 IU/L. The liver histopathology scoring showed that curcumin in nanosized particles was better than curcumin in degeneration of fat, lymphocyte infiltration, and necrosis. Conclusion: There was a 17 times increase in curcumin level in the liver of rats treated with curcumin modified into nanosized particles. Curcumin modified into nanosized particles showed more significant improvement as antioxidant and hepatoprotector than curcumin.
Collapse
Affiliation(s)
- Ni Made Dwi Sandhiutami
- Department of Pharmacology, Faculty of Pharmacy, Pancasila University, Srengseng Sawah, Jagakarsa, Jakarta, Indonesia
| | - Rika Sari Dewi
- Department of Pharmacology, Faculty of Pharmacy, Pancasila University, Srengseng Sawah, Jagakarsa, Jakarta, Indonesia
| | - Sondang Khairani
- Department of Pharmacology, Faculty of Pharmacy, Pancasila University, Srengseng Sawah, Jagakarsa, Jakarta, Indonesia
| | - Raka Nitya Agasti Putri
- Department of Pharmacology, Faculty of Pharmacy, Pancasila University, Srengseng Sawah, Jagakarsa, Jakarta, Indonesia
| |
Collapse
|
8
|
Kim ES, Baek Y, Yoo HJ, Lee JS, Lee HG. Chitosan-Tripolyphosphate Nanoparticles Prepared by Ionic Gelation Improve the Antioxidant Activities of Astaxanthin in the In Vitro and In Vivo Model. Antioxidants (Basel) 2022; 11:479. [PMID: 35326128 PMCID: PMC8944862 DOI: 10.3390/antiox11030479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to investigate the effects of chitosan (CS)-tripolyphosphate (TPP) nanoparticles (NPs) on the stability, antioxidant activity, and bioavailability of astaxanthin (ASX). ASX-loaded CS-TPP NPs (ACT-NPs) prepared by ionic gelation between CS (0.571 mg/mL) and TPP (0.571 mg/mL) showed 505.2 ± 184.8 nm, 20.4 ± 1.2 mV, 0.348 ± 0.044, and 63.9 ± 3.0% of particle size, zeta potential, polydispersity index and encapsulation efficiency, respectively. An in vitro release study confirmed that the release of ASX in simulated gastric (pH 1.2) and intestinal (pH 6.8) fluid was prolonged within ACT-NPs. The in vitro antioxidant activities of ACT-NPs were significantly improved compared with free ASX (FA) (p < 0.05). Furthermore, the cellular and in vivo antioxidant analysis verified that ACT-NPs could enhance the cytoprotective effects on the BHK-21 cell line and demonstrate sustained release properties, leading to prolonged residence time in the rat plasma. The results suggest that the stability, antioxidant properties, and bioavailability of ASX can be effectively enhanced through encapsulation within CS-TPP NPs.
Collapse
Affiliation(s)
- Eun Suh Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.S.K.); (Y.B.); (H.-J.Y.)
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.S.K.); (Y.B.); (H.-J.Y.)
| | - Hyun-Jae Yoo
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.S.K.); (Y.B.); (H.-J.Y.)
| | - Ji-Soo Lee
- Korean Living Science Research Center, Hanyang University, Seoul 04763, Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.S.K.); (Y.B.); (H.-J.Y.)
| |
Collapse
|
9
|
Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokinetics review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Sandhiutami NMD, Arozal W, Louisa M, Rahmat D, Wuyung PE. Curcumin Nanoparticle Enhances the Anticancer Effect of Cisplatin by Inhibiting PI3K/AKT and JAK/STAT3 Pathway in Rat Ovarian Carcinoma Induced by DMBA. Front Pharmacol 2021; 11:603235. [PMID: 33536913 PMCID: PMC7848208 DOI: 10.3389/fphar.2020.603235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Cisplatin has been used for decades for the treatment of ovarian cancer. However, despite its potent anticancer effect, cisplatin's efficacy as a single agent was inadequate in patients with advanced stage. Curcumin has been shown to sensitize cisplatin activity in several cancer models. However, the low bioavailability of curcumin has limited its anticancer potential. Hence, nano-formulation of curcumin was developed to increase its therapeutic efficacy in ovarian cancer. The objective of this study was to investigate the mechanism of curcumin nanoparticles given in combination with cisplatin in rat ovarian carcinoma induced by dimethylbenz(a)anthracene (DMBA). The administration of cisplatin and nanocurcumin resulted in a significant reduction in ovarian tumor volume and weight. Furthermore, there were reduction in expressions of Ki67, TGF-β, PI3K, and Akt phosphorylation. Co-treatment of cisplatin and nanocurcumin also reduced JAK expression, STAT3 phosphorylation, and reduced IL-6 concentrations. Altogether, nanocurcumin, given as a co-treatment with cisplatin has therapeutic potential in ovarian cancer models by inhibiting proliferation through downregulation of PI3K/Akt and JAK/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Ni Made Dwi Sandhiutami
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Faculty of Pharmacy, University of Pancasila, Jakarta, Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Deni Rahmat
- Faculty of Pharmacy, University of Pancasila, Jakarta, Indonesia
| | - Puspita Eka Wuyung
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Animal Research Facility, Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| |
Collapse
|