1
|
Torab-Miandoab A, Poursheikh Asghari M, Hashemzadeh N, Ferdousi R. Analysis and identification of drug similarity through drug side effects and indications data. BMC Med Inform Decis Mak 2023; 23:35. [PMID: 36788528 PMCID: PMC9926629 DOI: 10.1186/s12911-023-02133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The measurement of drug similarity has many potential applications for assessing drug therapy similarity, patient similarity, and the success of treatment modalities. To date, a family of computational methods has been employed to predict drug-drug similarity. Here, we announce a computational method for measuring drug-drug similarity based on drug indications and side effects. METHODS The model was applied for 2997 drugs in the side effects category and 1437 drugs in the indications category. The corresponding binary vectors were built to determine the Drug-drug similarity for each drug. Various similarity measures were conducted to discover drug-drug similarity. RESULTS Among the examined similarity methods, the Jaccard similarity measure was the best in overall performance results. In total, 5,521,272 potential drug pair's similarities were studied in this research. The offered model was able to predict 3,948,378 potential similarities. CONCLUSION Based on these results, we propose the current method as a robust, simple, and quick approach to identifying drug similarity.
Collapse
Affiliation(s)
- Amir Torab-Miandoab
- grid.412888.f0000 0001 2174 8913Department of Health Information Technology, Faculty of Management and Medical Informatics, Tabriz University of Medical Sciences, Golghast St., Tabriz, 5166614711 Iran
| | - Mehdi Poursheikh Asghari
- grid.412888.f0000 0001 2174 8913Department of Health Information Technology, Faculty of Management and Medical Informatics, Tabriz University of Medical Sciences, Golghast St., Tabriz, 5166614711 Iran
| | - Nastaran Hashemzadeh
- grid.412888.f0000 0001 2174 8913Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, Faculty of Management and Medical Informatics, Tabriz University of Medical Sciences, Golghast St., Tabriz, 5166614711, Iran.
| |
Collapse
|
2
|
Jamali AA, Kusalik A, Wu FX. NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:586-594. [PMID: 34914594 DOI: 10.1109/tcbb.2021.3135978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prediction of drug-target interactions (DTIs) plays a significant role in drug development and drug discovery. Although this task requires a large investment in terms of time and cost, especially when it is performed experimentally, the results are not necessarily significant. Computational DTI prediction is a shortcut to reduce the risks of experimental methods. In this study, we propose an effective approach of nonnegative matrix tri-factorization, referred to as NMTF-DTI, to predict the interaction scores between drugs and targets. NMTF-DTI utilizes multiple kernels (similarity measures) for drugs and targets and Laplacian regularization to boost the prediction performance. The performance of NMTF-DTI is evaluated via cross-validation and is compared with existing DTI prediction methods in terms of the area under the receiver operating characteristic (ROC) curve (AUC) and the area under the precision and recall curve (AUPR). We evaluate our method on four gold standard datasets, comparing to other state-of-the-art methods. Cross-validation and a separate, manually created dataset are used to set parameters. The results show that NMTF-DTI outperforms other competing methods. Moreover, the results of a case study also confirm the superiority of NMTF-DTI.
Collapse
|
3
|
Materials informatics approach using domain modelling for exploring structure-property relationships of polymers. Sci Rep 2022; 12:10558. [PMID: 35732681 PMCID: PMC9217937 DOI: 10.1038/s41598-022-14394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
In the development of polymer materials, it is an important issue to explore the complex relationships between domain structure and physical properties. In the domain structure analysis of polymer materials, 1H-static solid-state NMR (ssNMR) spectra can provide information on mobile, rigid, and intermediate domains. But estimation of domain structure from its analysis is difficult due to the wide overlap of spectra from multiple domains. Therefore, we have developed a materials informatics approach that combines the domain modeling (http://dmar.riken.jp/matrigica/) and the integrated analysis of meta-information (the elements, functional groups, additives, and physical properties) in polymer materials. Firstly, the 1H-static ssNMR data of 120 polymer materials were subjected to a short-time Fourier transform to obtain frequency, intensity, and T2 relaxation time for domains with different mobility. The average T2 relaxation time of each domain is 0.96 ms for Mobile, 0.55 ms for Intermediate (Mobile), 0.32 ms for Intermediate (Rigid), and 0.11 ms for Rigid. Secondly, the estimated domain proportions were integrated with meta-information such as elements, functional group and thermophysical properties and was analyzed using a self-organization map and market basket analysis. This proposed method can contribute to explore structure–property relationships of polymer materials with multiple domains.
Collapse
|
4
|
Torkamannia A, Omidi Y, Ferdousi R. A review of machine learning approaches for drug synergy prediction in cancer. Brief Bioinform 2022; 23:6552269. [PMID: 35323854 DOI: 10.1093/bib/bbac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Combinational pharmacotherapy with the synergistic/additive effect is a powerful treatment strategy for complex diseases such as malignancies. Identifying synergistic combinations with various compounds and structures requires testing a large number of compound combinations. However, in practice, examining different compounds by in vivo and in vitro approaches is costly, infeasible and challenging. In the last decades, significant success has been achieved by expanding computational methods in different pharmacological and bioinformatics domains. As promising tools, computational approaches such as machine learning algorithms (MLAs) are used for prioritizing combinational pharmacotherapies. This review aims to provide the models developed to predict synergistic drug combinations in cancer by MLAs with various information, including gene expression, protein-protein interactions, metabolite interactions, pathways and pharmaceutical information such as chemical structure, molecular descriptor and drug-target interactions.
Collapse
Affiliation(s)
- Anna Torkamannia
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Karimi S, Ahmadi M, Goudarzi F, Ferdousi R. A computational model for GPCR-ligand interaction prediction. J Integr Bioinform 2020; 18:155-165. [PMID: 34171942 PMCID: PMC7790179 DOI: 10.1515/jib-2019-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play an essential role in critical human activities, and they are considered targets for a wide range of drugs. Accordingly, based on these crucial roles, GPCRs are mainly considered and focused on pharmaceutical research. Hence, there are a lot of investigations on GPCRs. Experimental laboratory research is very costly in terms of time and expenses, and accordingly, there is a marked tendency to use computational methods as an alternative method. In this study, a prediction model based on machine learning (ML) approaches was developed to predict GPCRs and ligand interactions. Decision tree (DT), random forest (RF), multilayer perceptron (MLP), support vector machine (SVM), and Naive Bayes (NB) were the algorithms that were investigated in this study. After several optimization steps, receiver operating characteristic (ROC) for DT, RF, MLP, SVM, and NB algorithm were 95.2, 98.1, 96.3, 95.5, and 97.3, respectively. Accordingly final model was made base on the RF algorithm. The current computational study compared with others focused on specific and important types of proteins (GPCR) interaction and employed/examined different types of sequence-based features to obtain more accurate results. Drug science researchers could widely use the developed prediction model in this study. The developed predictor was applied over 16,132 GPCR-ligand pairs and about 6778 potential interactions predicted.
Collapse
Affiliation(s)
- Shiva Karimi
- Health Information Management Department, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Ahmadi
- Department of Health Information Management, School of Management and Medical Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Asadzadeh A, Pakkhoo S, Saeidabad MM, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100475. [PMID: 33204821 PMCID: PMC7661942 DOI: 10.1016/j.imu.2020.100475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Emergency management of the emerging infectious disease outbreak is critical for public health threats. Currently, control of the COVID-19 outbreak is an international concern and has become a crucial challenge in many countries. This article reviews significant information technologyIT) applications in emergency management of COVID-19 by considering the prevention/mitigation, preparedness, response, and recovery phases of the crisis. This review was conducted using MEDLINE PubMed), Embase, IEEE, and Google Scholar. Expert opinions were collected to show existence gaps, useful technologies for each phase of emergency management, and future direction. Results indicated that various IT-based systems such as surveillance systems, artificial intelligence, computational methods, Internet of things, remote sensing sensor, online service, and GIS geographic information system) could have different outbreak management applications, especially in response phases. Information technology was applied in several aspects, such as increasing the accuracy of diagnosis, early detection, ensuring healthcare providers' safety, decreasing workload, saving time and cost, and drug discovery. We categorized these applications into four core topics, including diagnosis and prediction, treatment, protection, and management goals, which were confirmed by five experts. Without applying IT, the control and management of the crisis could be difficult on a large scale. For reducing and improving the hazard effect of disaster situations, the role of IT is inevitable. In addition to the response phase, communities should be considered to use IT capabilities in prevention, preparedness, and recovery phases. It is expected that IT will have an influential role in the recovery phase of COVID-19. Providing IT infrastructure and financial support by the governments should be more considered in facilitating IT capabilities.
Collapse
Affiliation(s)
- Afsoon Asadzadeh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Pakkhoo
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mirzaei Saeidabad
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hero Khezri
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|