1
|
Lee HD, Kim JH, Choi JH, Kim KH, Ku J, Choi K, Kim HY, Lee S, Cho IH. Exploring phytochemicals and pharmacological properties of Populus × tomentiglandulosa. Front Pharmacol 2024; 15:1406623. [PMID: 39263565 PMCID: PMC11387176 DOI: 10.3389/fphar.2024.1406623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Populus × tomentiglandulosa (PT), a tree endemic to Korea, shows promising potential as a natural therapeutic agent owing to its potent anti-inflammatory properties. However, the isolation and analysis of phytochemical compounds in PT and related species remains underexplored. Therefore, this study aims to investigate the biochemical profile of PT and evaluate its extracts and fractions for anti-inflammatory activities. Nine compounds were isolated, including two novel flavonoids (luteolin 7-O-β-d-glucuronide butyl ester and chrysoeriol 7-O-β-d-glucuronide butyl ester) from the Salicaceae family for the first time. The ethyl acetate fraction exhibited significant radical scavenging activity against various radicals, including DPPH, ABTS+, •OH, and O2 - radicals. PT extracts and the ethyl acetate fraction showed minimal cytotoxicity in Raw 264.7 macrophages at concentrations below 500 and 100 μg/mL, respectively. Furthermore, PT extracts and fractions significantly suppressed the protein expression of proinflammatory mediators (iNOS and IL-6) in LPS-stimulated Raw 264.7 macrophages, highlighting their potent anti-inflammatory effects. These findings suggest that PT holds promise as a valuable natural therapeutic intervention for various oxidative stress and inflammation-related disorders, underscoring the need for further exploration of its clinical applications.
Collapse
Affiliation(s)
- Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jajung Ku
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kyung Choi
- Garden and Plant Resources Division, Korea National Arboretum, Pocheon, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Khazaal HT, El-Sayed EK, Mansour YE, Ibrahim RR, Bishr M, El Dib RA, Soliman HSM. Neuroprotective activity of Colocasia esculenta (L.) Schott leaves against monosodium glutamate-induced excitotoxicity in rats: phytochemical and molecular docking study. Nat Prod Res 2024:1-9. [PMID: 38606753 DOI: 10.1080/14786419.2024.2340061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Colocasia esculenta (L.) Schott is a food crop with long history of use in treatment of various disorders including neurological diseases. The methanolic leaves extract (ME) and its n-butanol fraction (n-BF) demonstrated significant in vivo neuroprotective activity in monosodium glutamate induced excitotoxicity in rats. Sixteen and fifteen polyphenolic compounds were identified in n-BF and ME, respectively, using HPLC. Phytochemical investigation of n-BF followed by 1D (1H and 13C NMR) spectroscopic analyses led to isolation and identification of daucosterol (1), thermopsoside (2) and chrysoeriol 7-O-β-D-neohesperidoside (3) for the first time from genus Colocasia, in addition to orientin (4). LC/MS/MRM analysis of fraction V obtained from n-BF revealed identification of 13 polyphenolic compounds. Molecular docking of isolated compounds confirmed binding of all compounds at the target pocket with higher energy than crystallised ligand. The current study evaluated and confirmed the mechanistic aspects of neuroprotective activity of C. esculenta leaves for the first time.
Collapse
Affiliation(s)
- Heba T Khazaal
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Elsayed K El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Yara E Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Reham R Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Mokhtar Bishr
- Plant General Manager and Technical Director of the Arab Company for Pharmaceuticals and Medicinal, Plants, Cairo, Egypt
| | - Rabab A El Dib
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Hesham S M Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
- PharmD program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
3
|
Dastan D, Dobie C, Zadali R, Pourrashid MH, Skropeta D, Miran M. Botanical description, phytochemical constituents, ethnobotany, traditional medicinal use, and pharmacological activities of Stachys lavandulifolia Vahl. Nat Prod Res 2024:1-15. [PMID: 38189318 DOI: 10.1080/14786419.2023.2301004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Stachys lavandulifolia Vahl known as "mountain tea", is a perennial flowering plant belonging to the Lamiaceae family and is widespread in Iran, Armenia, Azerbaijan, Iraq, Turkey and Turkmenistan. S. lavandulifolia is widely used in traditional medicine for its analgesic, anti-inflammatory and anxiolytic properties. This plant has different chemical compounds classes including terpenoids, iridoids, flavonoids and phenylethanoids that have been isolated from the aerial parts of it. This review covers the plant botany, traditional medicinal uses and chemical composition of S. lavandulifolia, along with its biological and pharmacological activities including clinical trial data. The information of this review article was obtained from different scientific databases such as Google scholar, Science Direct, Hindawi, SID, Scopus, PubMed, and ACS as well as traditional Persian books. Pharmacological and clinical studies, especially Anxiolytic activity and anti-inflammatory on the plant are relatively low, so these studies are suggested in the future. Also, phytochemical investigation on root of the plant is necessary.
Collapse
Affiliation(s)
- Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Christopher Dobie
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health, and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia
| | - Reza Zadali
- Department of Pharmacognosy, Faculty of Pharmacy, Islamic Azad University-Damghan Branch, Damghan, Iran
| | - Mouhamad Hassan Pourrashid
- Department of Clinical Pharmacy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health, and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales, Australia
| | - Mansour Miran
- Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Bouyahya A, Taha D, Benali T, Zengin G, El Omari N, El Hachlafi N, Khalid A, Abdalla AN, Ardianto C, Tan CS, Ming LC, Sahib N. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed Pharmacother 2023; 161:114337. [PMID: 36812715 DOI: 10.1016/j.biopha.2023.114337] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Cynaroside is a flavonoid, isolated from several species belonging to the Apiaceae, Poaceae, Lamiaceae, Solanaceae, Zingiberaceae, Compositae and other families and it can be extracted from seeds, roots, stems, leaves, barks, flowers, fruits, aerial parts, and the whole plant of these species. This paper discloses the current state of knowledge on the biological/pharmacological effects and mode of action to better understand the numerous health benefits of cynaroside. Several research works revealed that cynaroside could have beneficial effects on various human pathologies. Indeed, this flavonoid exerts antibacterial, antifungal, antileishmanial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory, and anticancer effects. Additionally, cynaroside exhibits its anticancer effects by blocking MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR, and P70S6K. For antibacterial activity, cynaroside reduces biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, the incidence of mutations leading to ciprofloxacin resistance in Salmonella typhimurium was reduced after the treatment with cynaroside. In addition, cynaroside inhibited the production of reactive oxygen species (ROS), which reduced the damage to mitochondrial membrane potential caused by hydrogen peroxide (H2O2). It also enhanced the expression of the anti-apoptotic protein Bcl-2 and lowered that of the pro-apoptotic protein Bax. Cynaroside abrogated the up-regulation of c-Jun N-terminal kinase (JNK) and p53 protein expression triggered by H2O2. All these findings suggest that cynaroside could be used to prevent certain human diseases.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi 46030, Morocco.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42250, Turkey.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco.
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fez B.P. 2626, Morocco.
| | - Asaad Khalid
- 7 Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, 71800 Nilai, Malaysia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Narjis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco.
| |
Collapse
|
5
|
Identification of α-Glucosidase Inhibitors from Leaf Extract of Pepper ( Capsicum spp.) through Metabolomic Analysis. Metabolites 2021; 11:metabo11100649. [PMID: 34677364 PMCID: PMC8538662 DOI: 10.3390/metabo11100649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and in vitro α-glucosidase inhibitory (AGI) activities of pepper leaves were used to identify bioactive compounds and select genotypes for the management of type 2 diabetes mellitus (T2DM). Targeted metabolite analysis using UPLC-DAD-QToF-MS was employed and identified compounds that belong to flavone and hydroxycinnamic acid derivatives from extracts of pepper leaves. A total of 21 metabolites were detected from 155 samples and identified based on MS fragmentations, retention time, UV absorbance, and previous reports. Apigenin-O-(malonyl) hexoside, luteolin-O-(malonyl) hexoside, and chrysoeriol-O-(malonyl) hexoside were identified for the first time from pepper leaves. Pepper genotypes showed a huge variation in their inhibitory activity against α-glucosidase enzyme(AGE) ranging from 17% to 79%. Genotype GP38 with inhibitory activity of 79% was found to be more potent than the positive control acarbose (70.8%.). Orthogonal partial least square (OPLS) analyses were conducted for the prediction of the AGI activities of pepper leaves based on their metabolite composition. Compounds that contributed the most to the bioactivity prediction model (VIP >1.5), showed a strong inhibitory potency. Caffeoyl-putrescine was found to show a stronger inhibitory potency (IC50 = 145 µM) compared to acarbose (IC50 = 197 µM). The chemometric procedure combined with high-throughput AGI screening was effective in selecting polyphenols of pepper leaf for T2DM management.
Collapse
|