1
|
Higa T, Ketterling JA, Mamou J, Hoerig C, Nagano N, Hirata S, Yoshida K, Yamaguchi T. Relationship between transmission/reception conditions of high-frequency plane wave compounding and evaluation accuracy of extended amplitude envelope statistics. JAPANESE JOURNAL OF APPLIED PHYSICS (2008) 2024; 63:04SP81. [PMID: 38911013 PMCID: PMC11192551 DOI: 10.35848/1347-4065/ad3a70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The double-Nakagami (DN) model provides a method for analyzing the amplitude envelope statistics of quantitative ultrasound (QUS). In this study, the relationship between the sound field characteristics and the robustness of QUS evaluation was evaluated using five HF linear array probes and tissue-mimicking phantoms. Compound plane-wave imaging (CPWI) was used to acquire echo data. Five phantoms containing two types of scatterers were used to mimic fatty liver tissue. After clarifying the relationship between the sound field characteristics of the probes and QUS parameters, DN QUS parameters in 10 rat livers with different lipidification were evaluated using one HF linear array probe. For both phantom and in situ liver analyses, correlations between fat content and multiple QUS parameters were confirmed, suggesting that the combination of CPWI using a HF linear array probe with the DN model is a robust method for quantifying fatty liver and has potential clinical diagnostic applications.
Collapse
Affiliation(s)
- Taisei Higa
- Graduate School of Science and Engineering, Chiba University, Yayoicho, Inage, Chiba 263-8522, Japan
| | - Jeffrey A. Ketterling
- Department of Radiology, Weill Cornell Medicine, New York, NY 10022, United States of America
| | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, NY 10022, United States of America
| | - Cameron Hoerig
- Department of Radiology, Weill Cornell Medicine, New York, NY 10022, United States of America
| | - Nahoko Nagano
- Center for Frontier Medical Engineering, Chiba University, Yayoicho, Inage, Chiba 263-8522, Japan
| | - Shinnosuke Hirata
- Center for Frontier Medical Engineering, Chiba University, Yayoicho, Inage, Chiba 263-8522, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, Yayoicho, Inage, Chiba 263-8522, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, Yayoicho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
2
|
Omura M, Saito W, Akita S, Yoshida K, Yamaguchi T. In Vivo Quantitative Ultrasound on Dermis and Hypodermis for Classifying Lymphedema Severity in Humans. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:646-662. [PMID: 35033402 DOI: 10.1016/j.ultrasmedbio.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the ability of in vivo quantitative ultrasound (QUS) assessment to evaluate lymphedema severity compared with the gold standard method, the International Society of Lymphology (ISL) stage. Ultrasonic measurements were made around the middle thigh (n = 150). Radiofrequency data were acquired using a clinical scanner and 8-MHz linear probe. Envelope statistical analysis was performed using constant false alarm rate processing and homodyned K (HK) distribution. The attenuation coefficient was calculated using the spectral log-difference technique. The backscatter coefficient (BSC) was obtained by the reference phantom method with attenuation compensation according to the attenuation coefficients in the dermis and hypodermis, and then effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were estimated with a Gaussian model. Receiver operating characteristic curves of QUS parameters were obtained using a linear regression model. A single QUS parameter with high area under the curve (AUC) differed between the dermis (ESD and EAC) and hypodermis (HK) parameters. The combinations with ESD and EAC in the dermis, HK parameters in the hypodermis and typical features (dermal thickness and echogenic regions in the hypodermis) improved classification performance between ISL stages 0 and ≥I (AUC = 0.90 with sensitivity of 75% and specificity of 91%) in comparison with ESD and EAC in the dermis (AUC = 0.82) and HK parameters in the hypodermis (AUC = 0.82). In vivo QUS assessment by BSC and envelope statistical analyses can be valuable for non-invasively classifying an extremely early stage of lymphedema, such as ISL stage I, and following its progression.
Collapse
Affiliation(s)
- Masaaki Omura
- Center for Frontier Medical Engineering, Chiba University, Chiba, Chiba, Japan; Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Wakana Saito
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, Chiba, Chiba, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
3
|
Sato Y, Tamura K, Mori S, Tai DI, Tsui PH, Yoshida K, Hirata S, Maruyama H, Yamaguchi T. Fatty liver evaluation with double-Nakagami model under low-resolution conditions. JAPANESE JOURNAL OF APPLIED PHYSICS 2021. [DOI: 10.35848/1347-4065/abf07d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
In previous studies, the double-Nakagami (DN) model has been proposed for fatty liver assessment and applied to in vivo rat livers and clinical data sets. The healthy liver structure filter (HLSF) method, which extracts non-healthy areas using two DN parameters, has also been proposed. In this paper, we first verify the accuracy of the DN model and the HLSF method for acoustic fields at 15 and 5 MHz, which were reproduced using numerical simulation. We then apply the method to clinical data sets of livers observed using a frequency of 3 MHz and investigate the method’s clinical usefulness. A positive correlation (
r
=
0.28
) was found between the ratio of the non-healthy area and fat mass. Although the results were inferior to the results produced using 15 MHz ultrasound (
r
=
0.96
), we found that it was possible to detect the difference between a normal liver and a fatty liver even at a lower frequency.
Collapse
|