1
|
Chen LX, Xu HF, Wang PS, Yang XX, Wu ZY, Li HF. SOD1 Mutation Spectrum and Natural History of ALS Patients in a 15-Year Cohort in Southeastern China. Front Genet 2021; 12:746060. [PMID: 34721532 PMCID: PMC8551486 DOI: 10.3389/fgene.2021.746060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Mutations in superoxide dismutase 1 gene (SOD1) are the most frequent high penetrant genetic cause for amyotrophic lateral sclerosis (ALS) in the Chinese population. A detailed natural history of SOD1-mutated ALS patients will provide key information for ongoing genetic clinical trials. Methods: We screened for SOD1 mutations using whole exome sequencing (WES) in Chinese ALS cases from 2017 to 2021. Functional studies were then performed to confirm the pathogenicity of novel variants. In addition, we enrolled previously reported SOD1 mutations in our centers from 2007 to 2017. The SOD1 mutation spectrum, age at onset (AAO), diagnostic delay, and survival duration were analyzed. Results: We found two novel SOD1 variants (p.G17H and p.E134*) that exerted both gain-of-function and loss-of-function effects in vitro. Combined with our previous SOD1-mutated patients, 32 probands with 21 SOD1 mutations were included with the four most frequently occurring mutations of p.V48A, p.H47R, p.C112Y, and p.G148D. SOD1 mutations account for 58.9% of familial ALS (FALS) cases. The mean (SD) AAO was 46 ± 11.4 years with a significant difference between patients carrying mutations in exon 1 [n = 5, 34.6 (12.4) years] and exon 2 [n = 8, 51.4 (8.2) years] (p = 0.038). The mean of the diagnostic delay of FALS patients is significantly earlier than the sporadic ALS (SALS) patients [9.5 (4.8) vs. 20.3 (9.3) years, p = 0.0026]. In addition, male patients survived longer than female patients (40 vs. 16 months, p = 0.05). Conclusion: Our results expanded the spectrum of SOD1 mutations, highlighted the mutation distribution, and summarized the natural history of SOD1-mutated patients in southeastern China. Male patients were found to have better survival, and FALS patients received an earlier diagnosis. Our findings assist in providing a detailed clinical picture, which is important for ongoing genetic clinical trials.
Collapse
Affiliation(s)
- Lu-Xi Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Feng Xu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Shan Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xia Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Liu ZJ, Lin HX, Wei Q, Zhang QJ, Chen CX, Tao QQ, Liu GL, Ni W, Gitler AD, Li HF, Wu ZY. Genetic Spectrum and Variability in Chinese Patients with Amyotrophic Lateral Sclerosis. Aging Dis 2019; 10:1199-1206. [PMID: 31788332 PMCID: PMC6844596 DOI: 10.14336/ad.2019.0215] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/15/2019] [Indexed: 01/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by selective impairment of upper and lower motor neurons. We aimed to investigate the genetic spectrum and variability in Chinese patients with ALS. A total of 24 familial ALS (FALS) and 21 early-onset sporadic ALS (SALS) of Chinese ancestry were enrolled. Targeted next-generation sequencing (NGS) was performed in the probands, followed by verification by Sanger sequencing and co-segregation analysis. Clinical features of patients with pathogenic or likely pathogenic variants were present. The mutation frequency of ALS-related genes was then analyzed in Chinese population. In this cohort, 17 known mutations (9 SOD1, 5 FUS, 2 TARDBP and one SETX) were identified in 14 FALS and 6 early-onset SALS. Moreover, 7 novel variants (SOD1 c.112G>C, OPTN c.811C>T, ERBB4 c.965T>A, DCTN1 c.1915C>T, NEFH c.2602G>A, NEK1 c.3622G>A, and TAF15 c.1535G>A) were identified. In southeastern Chinese FALS, the mutation frequency of SOD1, FUS, and TARDBP was 52.9%, 8.8%, 8.8% respectively. In early-onset SALS, FUS mutations were the most common (22.6%). In Chinese ALS cases, p.H47R is most frequent SOD1 mutations, while p.R521 is most common FUS mutation and p.M337V is most common TARDBP mutation. Our results revealed that mutations in SOD1, FUS and TARDBP are the most common cause of Chinese FALS, while FUS mutations are the most common cause of early-onset SALS. The genetic spectrum is different between Chinese ALS and Caucasian ALS.
Collapse
Affiliation(s)
- Zhi-Jun Liu
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Xia Lin
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,2Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qiao Wei
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi-Jie Zhang
- 2Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Cong-Xin Chen
- 2Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qing-Qing Tao
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Ni
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Aaron D Gitler
- 3Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hong-Fu Li
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- 1Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Wei Q, Zhou Q, Chen Y, Ou R, Cao B, Xu Y, Yang J, Shang HF. Analysis of SOD1 mutations in a Chinese population with amyotrophic lateral sclerosis: a case-control study and literature review. Sci Rep 2017; 7:44606. [PMID: 28291249 PMCID: PMC5349524 DOI: 10.1038/srep44606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/09/2017] [Indexed: 02/05/2023] Open
Abstract
Although the copper/zinc superoxide dismutase-1 (SOD1) gene has been identified in both familial ALS (FALS) and sporadic ALS (SALS), it has rarely been studied in Chinese patients with ALS, and there are few studies with large samples. This study sought to assess the prevalence of SOD1 mutations in Chinese ALS patients. We screened a cohort of 499 ALS patients (487 SALS and 12 FALS) from the Department of Neurology at the West China Hospital of Sichuan University and analyzed all coding exons of SOD1 by Sanger sequencing. In addition, we reviewed the mutation frequencies of common ALS causative genes in Chinese populations. Eight missense mutations in SOD1 were found in 8 ALS individuals: two novel mutations (p.G73D and p.V120F) and six previously reported mutations. The frequencies of SOD1 mutations were 1.03% (5/487) in SALS and 25% (3/12) in FALS from Southwest China. A literature review indicated that the mutation rates of major ALS causative genes were 53.55% in FALS and 6.29% in SALS. In Chinese SALS and FALS, the highest mutation frequency was in the SOD1 gene. Our results suggest that SOD1 mutation is the most common cause of ALS in Chinese populations and that the mutation spectrum of ALS varies among different ethnic populations.
Collapse
Affiliation(s)
- QianQian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - QingQing Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - RuWei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - YaQian Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Shahrizaila N, Sobue G, Kuwabara S, Kim SH, Birks C, Fan DS, Bae JS, Hu CJ, Gourie-Devi M, Noto Y, Shibuya K, Goh KJ, Kaji R, Tsai CP, Cui L, Talman P, Henderson RD, Vucic S, Kiernan MC. Amyotrophic lateral sclerosis and motor neuron syndromes in Asia. J Neurol Neurosurg Psychiatry 2016; 87:821-30. [PMID: 27093948 DOI: 10.1136/jnnp-2015-312751] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
While the past 2 decades have witnessed an increasing understanding of amyotrophic lateral sclerosis (ALS) arising from East Asia, particularly Japan, South Korea, Taiwan and China, knowledge of ALS throughout the whole of Asia remains limited. Asia represents >50% of the world population, making it host to the largest patient cohort of ALS. Furthermore, Asia represents a diverse population in terms of ethnic, social and cultural backgrounds. In this review, an overview is presented that covers what is currently known of ALS in Asia from basic epidemiology and genetic influences, through to disease characteristics including atypical phenotypes which manifest a predilection for Asians. With the recent establishment of the Pan-Asian Consortium for Treatment and Research in ALS to facilitate collaborations between clinicians and researchers across the region, it is anticipated that Asia and the Pacific will contribute to unravelling the uncertainties in ALS.
Collapse
Affiliation(s)
- N Shahrizaila
- Faculty of Medicine, Neurology Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - G Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S H Kim
- Department of Neurology, Hanyang University Medical Center, Seoul, South Korea
| | - Carol Birks
- International Alliance of ALS/MND Associations, Sydney, New South Wales, Australia
| | - D S Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - J S Bae
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - C J Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - M Gourie-Devi
- Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), New Delhi, Delhi, India
| | - Y Noto
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - K Shibuya
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K J Goh
- Faculty of Medicine, Neurology Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - R Kaji
- Department of Clinical Neuroscience, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - C P Tsai
- Department of Neurology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - L Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - P Talman
- Neurology Unit, Calvary Health Care, Bethlehem Hospital, Caulfield, Victoria, Australia
| | - R D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - S Vucic
- The Brain Dynamics Centre, Westmead Millennium Institute, Westmead, NSW and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - M C Kiernan
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Li HF, Wu ZY. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener 2016; 5:3. [PMID: 26843957 PMCID: PMC4738789 DOI: 10.1186/s40035-016-0050-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive neuronal loss and degeneration of upper motor neuron (UMN) and lower motor neuron (LMN). The clinical presentations of ALS are heterogeneous and there is no single test or procedure to establish the diagnosis of ALS. Most cases are diagnosed based on symptoms, physical signs, progression, EMG, and tests to exclude the overlapping conditions. Familial ALS represents about 5 ~ 10 % of ALS cases, whereas the vast majority of patients are sporadic. To date, more than 20 causative genes have been identified in hereditary ALS. Detecting the pathogenic mutations or risk variants for each ALS individual is challenging. However, ALS patients carrying some specific mutations or variant may exhibit subtly distinct clinical features. Unraveling the respective genotype-phenotype correlation has important implications for the genetic explanations. In this review, we will delineate the clinical features of ALS, outline the major ALS-related genes, and summarize the possible genotype-phenotype correlations of ALS.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| |
Collapse
|