1
|
Gaponenko IN, Ageev SV, Iurev GO, Shemchuk OS, Meshcheriakov AA, Petrov AV, Solovtsova IL, Vasina LV, Tennikova TB, Murin IV, Semenov KN, Sharoyko VV. Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C 60[C(COOH) 2] 3. Toxicol In Vitro 2019; 62:104683. [PMID: 31639450 DOI: 10.1016/j.tiv.2019.104683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
One of the most studied fullerene members, C60, has a potential of application in various fields of biomedicine including reactive oxygen species (ROS) scavenging activity, inhibiting of tumours development, inactivating of viruses and bacteria, as well as elaboration of diagnostic and targeted drug delivery tools. However, the hydrophobicity of this molecule impedes its practical use, therefore the actuality of the research devoted to functionalisation of fullerenes leading to amphiphilic derivatives remains important. In this work, the water-soluble carboxylated fullerene derivative C60[C(COOH)2]3 was studied. Extensive biomedical investigation of this compound, namely, the binding with human serum albumin (HSA), radical scavenging activity in the reaction with diphenylpicrylhydrazyl (DPPH) radical, photodynamic properties, cytotoxicity in human embryonic kidney (HEK293) cell line, erythrocytes' haemolysis, platelet aggregation, and genotoxicity in human peripheral mononuclear cells (PBMC) was conducted. Moreover, the dynamic and structural characteristics of C60[C(COOH)2]3-H2O binary system were obtained using molecular dynamic (MD) method, and size distribution of C60[C(COOH)2]3 associates was measured.
Collapse
Affiliation(s)
- Ivan N Gaponenko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Sergei V Ageev
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
| | - Olga S Shemchuk
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Anatolii A Meshcheriakov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia
| | - Tatiana B Tennikova
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia; Almazov National Medical Research Centre, Akkuratova str. 2, Saint Petersburg 197341, Russia.
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russia; Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| |
Collapse
|