1
|
Li X, Huang T, Deng C, Fu S, Shi X. Continuous flow stimulation had no significant effect on the growth rate but was conducive to the swimming performance, spontaneous behavior, and nonspecific immune parameter of juvenile Percocypris pingi. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:925-938. [PMID: 37528753 DOI: 10.1002/jez.2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Flow stimulation before release into the wild may contribute to improved survivability of farmed fish. However, the effects of flow stimulation on the survival rate of fish depend on the fish species and exercise regime, such as exercise type, duration, and intensity. In this study, juvenile Percocypris pingi swam for 18 h per day for 8 weeks under different water speeds, 3 cm s-1 (control) and 1, 2, and 4 body lengths (bl) s-1 , at 20°C. Then, parameters related to the growth rate, swimming capacity, spontaneous activity, and immune function were measured. We found that (1) continuous flow stimulation had no significant influence on the growth but was conducive to the increase in the relative carcass mass; (2) continuous flow stimulation at 2 or 4 bl s-1 enhanced the aerobic swimming capacity (Ucrit ), which may be due to an increase in anaerobic exercise capacity (endurance time) rather than to changes in maximum metabolic rate and aerobic scope; (3) continuous flow stimulation at 4 bl s-1 led to a significant increase in spontaneous activity, which was mainly due to the higher percent time spent moving as compared with the controls; and (4) continuous flow stimulation at 2 bl s-1 may contribute to improving the nonspecific immune parameter (lysozyme activity) in juvenile P. pingi. Our findings suggest that continuous flow stimulation at 2 or 4 bl s-1 for 18 h per day for 56 days at 20°C before release in wild may be a suitable training regime for improving the survival rate of cultured juvenile P. pingi.
Collapse
Affiliation(s)
- Xiuming Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tiji Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chunlin Deng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaotao Shi
- Hubei International Science and Technology Coopearation Base of Fish Passage, College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Flow velocity preference of Schizothorax oconnori Lloyd swimming upstream. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
3
|
Lu Y, Wu H, Deng LJ, Li TC, Yang K, Fu SJ, Song ZB. Improved aerobic and anaerobic swimming performance after exercise training and detraining in Schizothorax wangchiachii: Implications for fisheries releases. Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110698. [PMID: 32276042 DOI: 10.1016/j.cbpa.2020.110698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Swimming performance (aerobic and anaerobic) is often used to predict the ability of fish to adapt and survive. Fish raised in captivity are typically poor swimmers and have lower survival rates than wild conspecifics when released into the natural environment. We investigated the potential for exercise training to enhance the swimming performance of Schizothorax wangchiachii held in captivity. Juvenile fish (mean body mass 1.40 ± 0.13 g, mean body length 4.36 ± 0.24 cm) were trained under five different regimes [3 cm·s-1 control group (C), 10 cm·s-1 for 6 (L6) and 12 h (L12) per day and 20 cm·s-1 for 6 (H6) and 12 h (H12) per day] for 30 days and then detrained for 20 days (i.e. no training). Aerobic (i.e. critical swimming speed, Ucrit), anaerobic swimming performance (i.e. endurance time at 1.2 or 1.5 Ucrit), and morphological parameters were measured at the beginning (T0), after 30 days of exercise training (T30) and after 20 days of detraining (DT20). Aerobic exercise training significantly improved the Ucrit, endurance time at 1.2 and 1.5 Ucrit of juvenile S. wangchiachii (P < .05). After 20 days of detraining, both the aerobic and anaerobic swimming performance of the H6 and H12 groups declined and no longer differed from the control group indicating a failure to maintain improved swimming performance, whereas improved swimming performance was maintained in L6 and L12 groups. No significant difference in swimming performance was found between 6 and 12 hours training at 10 cm·s-1. Thus, exercise at close to 10 cm·s-1 for 6 h per day for 30 days or a longer time periods prior to release appears to be a suitable regime for swimming performance enhancement, potentially increasing survivability of released S. wangchiachii in wild.
Collapse
Affiliation(s)
- Yan Lu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Hui Wu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Long-Jun Deng
- Yalong River Hydropower Development Company, Ltd., Chengdu 610051, PR China
| | - Tian-Cai Li
- Yalong River Hydropower Development Company, Ltd., Chengdu 610051, PR China
| | - Kun Yang
- Institute of Ecology, China West Normal University, Nanchong 637002, PR China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, PR China.
| | - Zhao-Bin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Li X, Zhang Y, Li X, Zheng H, Peng J, Fu S. Sustained exercise-trained juvenile black carp ( Mylopharyngodon piceus) at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses. Biol Open 2018; 7:bio032425. [PMID: 29463516 PMCID: PMC5861366 DOI: 10.1242/bio.032425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control), 1 body length (BL) s-1, 2 BL s-1 and 4 BL s-1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus). The results demonstrated that fish subjected to sustained training at 2 and 4 BL s-1 showed significantly higher critical swimming speed (Ucrit) and maximum metabolic rate (MMR) over the control group. Fish subjected to sustained training at 1 and 2 BL s-1 showed a significantly (30 and 54%) prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak), and 62 and 92% more energy expended on specific dynamic action (SDA), respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1) sustained exercise training at a higher speed (2 or 4 BL s-1) had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2) sustained exercise training at a lower speed (1 or 2 BL s-1) resulted in elevated postprandial metabolic responses in juvenile M. piceus.
Collapse
Affiliation(s)
- Xiuming Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Education Ministry), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Education Ministry), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojin Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Hua Zheng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Jianglan Peng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
5
|
He W, Xia W, Cao ZD, Fu SJ. The effect of prolonged exercise training on swimming performance and the underlying biochemical mechanisms in juvenile common carp (Cyprinus carpio). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:308-15. [PMID: 23838144 DOI: 10.1016/j.cbpa.2013.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022]
Abstract
To investigate the effect of prolonged exercise training on swimming performance and the underlying biochemical mechanisms in juvenile common carp (Cyprinus carpio), we measured the critical swimming speed (Ucrit), the excess post-exercise oxygen consumption (EPOC), the activity of red and white muscle enzymes [pyruvate kinase (PK), lactate dehydrogenase (LDH) and citrate synthase (CS)], the tissue substrates (glycogen and glucose content of muscle and liver) and metabolite (the lactate content of plasma and muscle) content of exercise-trained (60% Ucrit for 4 weeks) and non-trained fish. We also measured the biochemical indices of both trained and non-trained fish immediately after Ucrit, after exhaustive exercise and 1h after exhaustive exercise. The aerobic swimming performance, as indicated by Ucrit, increased significantly after exercise training, most likely because of the higher tissue metabolic capacity, as suggested by the higher CS activity in the red muscle tissue, and the higher energy store and more efficient substrate utilization, as suggested by higher liver and muscle glycogen contents at rest but lower tissue glycogen contents after Ucrit. The lower lactate content after Ucrit is most likely because of higher aerobic metabolic capacity, and (or) the clearance rate of lactate in trained fish may also contribute to improved aerobic swimming performance. Compared to Ucrit, exhaustive exercise elicited higher plasma and muscle lactate contents. The anaerobic metabolic performance is not affected by the exercise training, as suggested by the EPOC. However, trained fish did show higher lactate clearance rates, as suggested by lower muscle lactate content after a 1h recovery period following exhaustive exercise compared to non-trained fish. Furthermore, trained fish decreased their liver and muscle glycogen contents more profoundly after exhaustive exercise, suggesting that training can improve the substrate utilization during anaerobic exercise.
Collapse
Affiliation(s)
- Wei He
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | | | | | | |
Collapse
|