1
|
Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Cells 2023; 12:1147. [PMID: 37190056 PMCID: PMC10137227 DOI: 10.3390/cells12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.
Collapse
Affiliation(s)
- June Baik
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karim Azzag
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah B. Crist
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aline Yamashita
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Elizabeth Perrin
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - John P. Maufort
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Jody L. Janecek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael M. Lee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
2
|
Siemionow M, Szilagyi E, Cwykiel J, Domaszewska-Szostek A, Heydemann A, Garcia-Martinez J, Siemionow K. Transplantation of Dystrophin Expressing Chimeric Human Cells of Myoblast/Mesenchymal Stem Cell Origin Improves Function in Duchenne Muscular Dystrophy Model. Stem Cells Dev 2021; 30:190-202. [PMID: 33349121 DOI: 10.1089/scd.2020.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in dystrophin gene. Currently, there is no cure for DMD. Cell therapies are challenged by limited engraftment and rejection. Thus, more effective and safer therapeutic approaches are needed for DMD. We previously reported increased dystrophin expression correlating with improved function after transplantation of dystrophin expressing chimeric (DEC) cells of myoblast origin in the mdx mouse models of DMD. This study established new DEC cell line of myoblasts and mesenchymal stem cells (MSC) origin and tested its efficacy and therapeutic potential in mdx/scid mouse model of DMD. Fifteen ex vivo cell fusions of allogenic human myoblast [normal myoblasts (MBN)] and normal human bone marrow-derived MSC (MSCN) from normal donors were performed using polyethylene glycol. Flow cytometry, confocal microscopy, polymerase chain reaction (PCR)-short tandem repeats, polymerase chain reaction-reverse sequence-specific oligonucleotide probe assessed chimeric state of fused MBN/MSCN DEC cells, whereas Comet assay assessed fusion procedure safety testing genotoxicity. Immunofluorescence and real-time PCR assessed dystrophin expression and myogenic differentiation. Mixed lymphocyte reaction (MLR) evaluated DEC's immunogenicity. To test MBN/MSCN DEC efficacy in vivo, gastrocnemius muscle of mdx/scid mice were injected with vehicle (n = 12), nonfused MBN and MSCN (n = 9, 0.25 × 106/each) or MBN/MSCN DEC (n = 9, 0.5 × 106). Animals were evaluated for 90 days using ex vivo and in vivo muscle strength tests. Histology and immunofluorescence staining assessed dystrophin expression, centrally nucleated fibers and scar tissue formation. Post-fusion, MBN/MSCN DEC chimeric state, myogenic differentiation, and dystrophin expression were confirmed. MLR reveled reduced DEC's immune response compared with controls (P < 0.05). At 90 days post-DEC transplant, increase in dystrophin expression (20.26% ± 2.5%, P < 0.05) correlated with improved muscle strength and function in mdx/scid mice. The created human MBN/MSCN DEC cell line introduces novel therapeutic approach combining myogenic and immunomodulatory properties of MB and MSC, and as such may open a universal approach for muscle regeneration in DMD.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Fusion
- Cells, Cultured
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Gene Expression
- Humans
- Hybrid Cells/cytology
- Hybrid Cells/metabolism
- Hybrid Cells/transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, SCID
- Muscle, Skeletal/cytology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/cytology
- Myoblasts/metabolism
- Stem Cell Transplantation/methods
- Transplantation, Heterologous
- Mice
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erzsebet Szilagyi
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anna Domaszewska-Szostek
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Human Epigenetics, Mossakowski Medical Research Center Polish Academy of Science, Warsaw, Poland
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jesus Garcia-Martinez
- Department of Clinical Health Sciences, Saint Louis University, Saint Louis, Missouri, USA
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Davoudi S, Chin CY, Cooke MJ, Tam RY, Shoichet MS, Gilbert PM. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials 2018; 173:34-46. [DOI: 10.1016/j.biomaterials.2018.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
|
4
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Skuk D, Tremblay JP. The Process of Engraftment of Myogenic Cells in Skeletal Muscles of Primates: Understanding Clinical Observations and Setting Directions in Cell Transplantation Research. Cell Transplant 2018; 26:1763-1779. [PMID: 29338383 PMCID: PMC5784521 DOI: 10.1177/0963689717724798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We studied in macaques the evolution of the intramuscular transplantation of muscle precursor cells between the time of administration and the time at which the graft is considered stable. Satellite cell–derived myoblasts labeled with ß-galactosidase were transplanted into 1 cm3 muscle regions following cell culture and transplantation protocols similar to our last clinical trials. These regions were biopsied 1 h, 1, 3, 7 d, and 3 wk later and analyzed by histology. We observed that the cell suspension leaks from the muscle bundles during injection toward the epimysium and perimysium, where most cells accumulate after transplantation. We observed evidence of necrosis, apoptosis, and mitosis in the accumulations of grafted cells, and of potential migration to participate in myofiber regeneration in the surrounding muscle bundles. After 3 wk, the compact accumulations of grafted cells left only some graft-derived myotubes and small myofibers in the perimysium. Hybrid myofibers were abundant in the muscle fascicles at 3 wk posttransplantation, and they most likely occur by grafted myoblasts that migrated from the peripheral accumulations than by the few remaining within the fascicles immediately after injection. These observations explain the findings in clinical trials of myoblast transplantation and provide information for the future research in cell therapy in myology.
Collapse
Affiliation(s)
- Daniel Skuk
- 1 Axe Neurosciences, Research Center of the CHU de Quebec-CHUL, Quebec, Canada
| | - Jacques P Tremblay
- 1 Axe Neurosciences, Research Center of the CHU de Quebec-CHUL, Quebec, Canada
| |
Collapse
|
6
|
Stephan L, Bouchentouf M, Mills P, Lafreniere JF, Tremblay JP. 1,25-Dihydroxyvitamin D3 Increases the Transplantation Success of Human Muscle Precursor Cells in SCID Mice. Cell Transplant 2017; 16:391-402. [PMID: 17658129 DOI: 10.3727/000000007783464876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human muscle precursor cell (hMPC) transplantation is a potential therapy for severe muscle trauma or myopathies. Some previous studies demonstrated that 1,25-dihydroxyvitamin-D3 (1,25-D3) acted directly on myoblasts, regulating their proliferation and fusion. 1,25-D3 is also involved in apoptosis modulation of other cell types and may thus contribute to protect the transplanted hMPCs. We have therefore investigated whether 1,25-D3 could improve the hMPC graft success. The 1,25-D3 effects on hMPC proliferation, fusion, and survival were initially monitored in vitro. hMPCs were also grafted in the tibialis anterior of SCID mice treated or not with 1,25-D3 to determine its in vivo effect. Graft success, proliferation, and viability of transplanted hMPCs were evaluated. 1,25-D3 enhanced proliferation and fusion of hMPCs in vitro and in vivo. However, 1,25-D3 did not protect hMPCs from various proapoptotic factors (in vitro) or during the early posttransplantation period. 1,25-D3 enhanced hMPC graft success because the number of muscle fibers expressing human dystrophin was significantly increased in the TA sections of 1,25-D3-treated mice (166.75 ± 20.64) compared to the control mice (97.5 ± 16.58). This result could be partly attributed to the improvement of the proliferation and differentiation of hMPCs in the presence of 1,25-D3. Thus, 1,25-D3 administration could improve the clinical potential of hMPC transplantation currently developed for muscle trauma or myopathies.
Collapse
Affiliation(s)
- Lionel Stephan
- Unité de Génétique Humaine, Centre de Recherche du CHUL, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
7
|
Domínguez-Bendala J, Ricordi C. Article Commentary: Stem Cell Plasticity and Tissue Replacement. Cell Transplant 2017; 14:423-425. [DOI: 10.3727/000000005783982891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
9
|
Human myogenic reserve cells are quiescent stem cells that contribute to muscle regeneration after intramuscular transplantation in immunodeficient mice. Sci Rep 2017; 7:3462. [PMID: 28615691 PMCID: PMC5471254 DOI: 10.1038/s41598-017-03703-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/03/2017] [Indexed: 11/08/2022] Open
Abstract
Satellite cells, localized within muscles in vivo, are Pax7+ muscle stem cells supporting skeletal muscle growth and regeneration. Unfortunately, their amplification in vitro, required for their therapeutic use, is associated with reduced regenerative potential. In the present study, we investigated if human myogenic reserve cells (MRC) obtained in vitro, represented a reliable cell source for muscle repair. For this purpose, primary human myoblasts were freshly isolated and expanded. After 2 days of differentiation, 62 ± 2.9% of the nuclei were localized in myotubes and 38 ± 2.9% in the mononucleated non-fusing MRC. Eighty percent of freshly isolated human MRC expressed a phenotype similar to human quiescent satellite cells (CD56+/Pax7+/MyoD−/Ki67− cells). Fourteen days and 21 days after cell transplantation in immunodeficient mice, live human cells were significantly more numerous and the percentage of Pax7+/human lamin A/C+ cells was 2 fold higher in muscles of animals injected with MRC compared to those injected with human myoblasts, despite that percentage of spectrin+ and lamin A/C+ human fibers in both groups MRC were similar. Taken together, these data provide evidence that MRC generated in vitro represent a promising source of cells for improving regeneration of injured skeletal muscles.
Collapse
|
10
|
Skuk D, Tremblay JP. Cell Therapy in Myology: Dynamics of Muscle Precursor Cell Death after Intramuscular Administration in Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:232-240. [PMID: 28573152 PMCID: PMC5447384 DOI: 10.1016/j.omtm.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023]
Abstract
Cell therapy could be useful for the treatment of myopathies. A problem observed in mice, with different results and interpretations, is a significant death among the transplanted cells. We analyzed this problem in non-human primates, the animal model more similar to humans. Autologous or allogeneic myoblasts (with or without a reporter gene) were proliferated in vitro, labeled with [14C]thymidine, and intramuscularly injected in macaques. Some monkeys were immunosuppressed for long-term follow-up. Cell-grafted regions were biopsied at different intervals and analyzed by radiolabel quantification and histology. Most radiolabel was lost during the first week after injection, regardless of whether the cells were allogeneic or autologous, the culture conditions, and the use or not of immunosuppression. There was no significant difference between 1 hr and 1 day post-transplantation, a significant decrease between days 1 and 3 (45% to 83%), a significant decrease between days 3 and 7 (80% to 92%), and no significant differences between 7 days and 3 weeks. Our results confirmed in non-human primates a progressive and significant death of the grafted myoblasts during the first week after administration, relatively similar to some observations in mice but with different kinetics.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| |
Collapse
|
11
|
Negroni E, Gidaro T, Bigot A, Butler-Browne GS, Mouly V, Trollet C. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015; 41:270-87. [PMID: 25405809 DOI: 10.1111/nan.12198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.
Collapse
Affiliation(s)
- Elisa Negroni
- Institut de Myologie, CNRS FRE3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, 47 bd de l'Hôpital, Paris, 75013, France
| | | | | | | | | | | |
Collapse
|
12
|
Dynamics of acute local inflammatory response after autologous transplantation of muscle-derived cells into the skeletal muscle. Mediators Inflamm 2014; 2014:482352. [PMID: 25242868 PMCID: PMC4163307 DOI: 10.1155/2014/482352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022] Open
Abstract
The vast majority of myoblasts transplanted into the skeletal muscle die within the first week after injection. Inflammatory response to the intramuscular cell transfer was studied in allogeneic but not in autologous model. The aim of this study was to evaluate immune reaction to autotransplantation of myogenic cells and to assess its dynamics within the first week after injection. Muscle-derived cells or medium alone was injected into the intact skeletal muscles in autologous model. Tissue samples were collected 1, 3, and 7 days after the procedure. Our analysis revealed the peak increase of the gene expression of all evaluated cytokines (Il-1α, Il-1β, Il-6, Tgf-β, and Tnf-α) at day 1. The mRNA level of analyzed cytokines normalized in subsequent time points. The increase of Il-β
gene expression was further confirmed at the protein level. Analysis of the tissue sections revealed rapid infiltration of injected cell clusters with neutrophils and macrophages. The inflammatory infiltration was almost completely resolved at day 7. The survived cells were able to participate in the muscle regeneration process. Presented results demonstrate that autotransplanted muscle-derived cells induce classical early immune reaction in the site of injection which may contribute to cellular graft elimination.
Collapse
|
13
|
Stem cell transplantation for muscular dystrophy: the challenge of immune response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964010. [PMID: 25054157 PMCID: PMC4098613 DOI: 10.1155/2014/964010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Treating muscle disorders poses several challenges to the rapidly evolving field of regenerative medicine. Considerable progress has been made in isolating, characterizing, and expanding myogenic stem cells and, although we are now envisaging strategies to generate very large numbers of transplantable cells (e.g., by differentiating induced pluripotent stem cells), limitations directly linked to the interaction between transplanted cells and the host will continue to hamper a successful outcome. Among these limitations, host inflammatory and immune responses challenge the critical phases after cell delivery, including engraftment, migration, and differentiation. Therefore, it is key to study the mechanisms and dynamics that impair the efficacy of cell transplants in order to develop strategies that can ultimately improve the outcome of allogeneic and autologous stem cell therapies, in particular for severe disease such as muscular dystrophies. In this review we provide an overview of the main players and issues involved in this process and discuss potential approaches that might be beneficial for future regenerative therapies of skeletal muscle.
Collapse
|
14
|
Minimally invasive approach to the repair of injured skeletal muscle with a shape-memory scaffold. Mol Ther 2014; 22:1441-1449. [PMID: 24769909 DOI: 10.1038/mt.2014.78] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/16/2014] [Indexed: 12/15/2022] Open
Abstract
Repair of injured skeletal muscle by cell therapies has been limited by poor survival of injected cells. Use of a carrier scaffold delivering cells locally, may enhance in vivo cell survival, and promote skeletal muscle regeneration. Biomaterial scaffolds are often implanted into muscle tissue through invasive surgeries, which can result in trauma that delays healing. Minimally invasive approaches to scaffold implantation are thought to minimize these adverse effects. This hypothesis was addressed in the context of a severe mouse skeletal muscle injury model. A degradable, shape-memory alginate scaffold that was highly porous and compressible was delivered by minimally invasive surgical techniques to injured tibialis anterior muscle. The scaffold controlled was quickly rehydrated in situ with autologous myoblasts and growth factors (either insulin-like growth factor-1 (IGF-1) alone or IGF-1 with vascular endothelial growth factor (VEGF)). The implanted scaffolds delivering myoblasts and IGF-1 significantly reduced scar formation, enhanced cell engraftment, and improved muscle contractile function. The addition of VEGF to the scaffold further improved functional recovery likely through increased angiogenesis. Thus, the delivery of myoblasts and dual local release of VEGF and IGF-1 from degradable scaffolds implanted through a minimally invasive procedure effectively promoted the functional regeneration of injured skeletal muscle.
Collapse
|
15
|
Zhang C, Nong Y, Tong S, Yao Q, Wen L, Zhang Z, Wei L, Cheng J, Feng Y, Song Z. Triptolide improves early survival of mesenchymal stem cells transplanted into rat myocardium. Cardiology 2014; 128:73-85. [PMID: 24557329 DOI: 10.1159/000356551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate whether triptolide can prolong the survival of rat mesenchymal stem cells (MSCs) transfected with the mouse hyperpolarization-activated cyclic nucleotide-gated channel 4 (mHCN4) gene in the myocardium. METHODS Grafted cell survival was determined using a sex-mismatched cell transplantation model and analysis of Y chromosome-specific Sry gene expression from hearts harvested at different time points after cell transplantation. ELISA and RT-PCR were used to measure protein and mRNA levels, respectively, of nuclear factor (NF)-κB, IL-1β, IL-6 and TNF-α. RESULTS Donor cell numbers decreased over time. Pretreatment with triptolide improved graft survival both 24 (29.3 ± 0.9%) and 72 h (17.5 ± 1.2%) after transplantation of MSCs and resulted in a 2.5-fold increase in the total cell number 72 h after cell transplantation. The mRNA expression and protein content of NF-κB, IL-1β, IL-6 and TNF-α were significantly reduced in the triptolide-treated group compared with the control groups. In addition, triptolide downregulated Bax but upregulated Bcl-2 in the injected region. CONCLUSIONS Transient treatment with triptolide may significantly improve the early survival of MSCs in vivo. The mechanism underlying this effect involves attenuating the inflammatory response via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Changhai Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Extensive studies in experimental animal heart models and patients have shown the promise of bone marrow cell (BMC) transplantation as an alternative strategy to the conventional treatment modalities for cardiac repair. 'Stemness' of BMC to adopt cardiac phenotype, their potential as carriers of exogenous therapeutic genes and an inherent ability to express growth factors and cytokines to exert paracrine effects have been especially focused until recently. These findings suggest that locally delivered BMCs are capable of regenerating de novo myocardium. Others have shown that extensive neovascularization due to paracrine effects of the engrafted cells resulted in improved regional blood flow and reduced infarct size. Despite initial success, there are multiple fundamental issues that remain contentious. Indeed, resolving these issues will optimize future heart cell therapy protocols to achieve better prognosis in the clinical settings. This review is a concise, in-depth and critical appreciation of the role of BMCs in heart cell therapy and builds a conceptual framework to elaborate their significance as a possible source of donor cells. Moreover, it discusses the current status of BMC transplantation as a clinical modality and the relevant issues confronting this approach in light of the published data with clinical relevance.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory of Medicine, 231-Albert Sabinway, Cinncinati, OH 45267-0529, USA.
| |
Collapse
|
17
|
Laumonier T, Pradier A, Hoffmeyer P, Kindler V, Menetrey J. Low Molecular Weight Dextran Sulfate Binds to Human Myoblasts and Improves their Survival after Transplantation in Mice. Cell Transplant 2013; 22:1213-26. [DOI: 10.3727/096368912x657224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myoblast transplantation represents a promising therapeutic strategy in the treatment of several genetic muscular disorders including Duchenne muscular dystrophy. Nevertheless, such an approach is impaired by the rapid death, limited migration, and rejection of transplanted myoblasts by the host. Low molecular weight dextran sulfate (DXS), a sulfated polysaccharide, has been reported to act as a cytoprotectant for various cell types. Therefore, we investigated whether DXS could act as a “myoblast protectant” either in vitro or in vivo after transplantation in immunodeficient mice. In vitro, DXS bound human myoblasts in a dose dependent manner and significantly inhibited staurosporine-mediated apoptosis and necrosis. DXS pretreatment also protected human myoblasts from natural killer cell-mediated cytotoxicity. When human myoblasts engineered to express the renilla luciferase transgene were transplanted in immunodeficient mice, bioluminescence imaging analysis revealed that the proportion of surviving myoblasts 1 and 3 days after transplantation was two times higher when cells were preincubated with DXS compared to control (77.9 ± 10.1% vs. 39.4 ± 4.9%, p = 0.0009 and 38.1 ± 8.5% vs. 15.1 ± 3.4%, p = 0.01, respectively). Taken together, we provide evidence that DXS acts as a myoblast protectant in vitro and is able in vivo to prevent the early death of transplanted myoblasts.
Collapse
Affiliation(s)
- Thomas Laumonier
- Orthopaedic Surgery Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Amandine Pradier
- Hematology Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Pierre Hoffmeyer
- Orthopaedic Surgery Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Vincent Kindler
- Hematology Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jacques Menetrey
- Orthopaedic Surgery Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
18
|
Gérard C, Dufour C, Goudenege S, Skuk D, Tremblay JP. AG490 improves the survival of human myoblasts in vitro and in vivo. Cell Transplant 2012; 21:2665-76. [PMID: 22963730 DOI: 10.3727/096368912x655028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cell therapies consist in transplanting healthy cells into a disabled tissue with the goal to repopulate it and restore its function at least partially. In muscular diseases, most of the time, myoblasts are chosen for their expansion capacity in culture. Nevertheless, cell transplantation has limitations, among them, death of the transplanted cells, during the days following the graft. One possibility to counteract this problem is to enhance the proliferation of the transplanted myoblasts before their fusion with the existing muscle fibers. AG490 is a specific inhibitor of janus tyrosine kinase 2 (JAK2). The hypothesis is to block myoblast differentiation with AG490, thus permitting their proliferation. The inhibition of myoblast fusion by AG490 was confirmed in this study by gene expression and with a myosin heavy chain staining (MyHC). Moreover, cell survival was estimated by flow cytometry. AG490 was found to protect myoblasts in vitro from apoptosis induced by H(2)O(2) or by preventing attachment of cells to their substrate. Finally, in an in vivo model of muscle regeneration, when AG490 was coinjected with the myoblasts their survival was increased by 45% at 5 days after their transplantation.
Collapse
Affiliation(s)
- Catherine Gérard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Acute Rejection of Myofibers in Nonhuman Primates: Key Histopathologic Features. J Neuropathol Exp Neurol 2012; 71:398-412. [DOI: 10.1097/nen.0b013e31825243ae] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Fakhfakh R, Lamarre Y, Skuk D, Tremblay JP. Losartan Enhances the Success of Myoblast Transplantation. Cell Transplant 2012; 21:139-52. [PMID: 21535912 DOI: 10.3727/096368911x576045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Duchenne muscular dystrophy is a recessive X-linked genetic disease caused by dystrophin gene mutations. Cell therapy can be a potential approach aiming to introduce a functional dystrophin in the dystrophic patient myofibers. However, this strategy produced so far limited results. Transforming growth factor-β (TGF-β) is a negative regulator of skeletal muscle development and is responsible for limiting myogenic regeneration. The combination of TGF-β signaling inhibition with myoblast transplantation can be an effective therapeutic approach in dystrophin-deficient patients. Our aim was to verify whether the success of human myoblast transplantation in immunodeficient dystrophic mice is enhanced with losartan, a molecule that downregulates TGF-β expression. In vitro, blocking TGF-β activity with losartan increased proliferation and fusion and decreased apoptosis in human myoblasts. In vivo, human myoblasts were transplanted in mice treated with oral losartan. Immunodetection of human dystrophin in tibialis anterior cross sections 1 month posttransplantation revealed more human dystrophin-positive myofibers in these mice than in nontreated dystrophic mice. Thus, blocking the TGF-β signal with losartan treatment improved the success of myoblast transplantation probably by increasing myoblast proliferation and fusion, decreasing macrophage activation, and changing the expression of myogenic regulator factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Yann Lamarre
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Daniel Skuk
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Jacques P. Tremblay
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
21
|
Rathbone CR, Yamanouchi K, Chen XK, Nevoret-Bell CJ, Rhoads RP, Allen RE. Effects of transforming growth factor-beta (TGF-β1) on satellite cell activation and survival during oxidative stress. J Muscle Res Cell Motil 2011; 32:99-109. [PMID: 21823037 DOI: 10.1007/s10974-011-9255-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
Abstract
The regulation of adult skeletal muscle repair and regeneration is largely due to the contribution of resident adult myogenic precursor cells called satellite cells. The events preceding their participation in muscle repair include activation (exit from quiescence), proliferation, and differentiation. This study examined the effects of transforming growth factor-beta (TGF-β1) on satellite cell activation, determined whether TGF-β1 could maintain quiescence in the presence of hepatocyte growth factor (HGF), and whether the regulation of satellite cell activation with TGF-β1 improves the ability of satellite cells to withstand oxidative stress. The addition of TGF-β1 during early satellite cell activation (0-48 h) or during the proliferative phase (48-96 h) maintained and induced satellite cell quiescence, respectively, as determined by myogenic differentiation (MyoD) protein expression. TGF-β1 also attenuated satellite cell activation when used with HGF. Finally, the role of quiescence in protecting cells against oxidative stress was examined. TGF-β1 treatment and the low pH satellite cell preparation procedure, a technique that forestalls spontaneous activation in vitro, both enhanced survival of cultured satellite cells following hydrogen peroxide treatment. These findings indicate that TGF-β1 is capable of maintaining and inducing satellite cell quiescence and suggest methods to maintain satellite cell quiescence may improve their transplantation efficiency.
Collapse
Affiliation(s)
- Christopher R Rathbone
- Muscle Biology Group, Department of Animal Sciences, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | |
Collapse
|
22
|
In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther 2010; 18:835-42. [PMID: 20125125 DOI: 10.1038/mt.2010.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vivo fluorescence imaging (FLI) enables monitoring fluorescent protein (FP)-labeled cells and proteins in living organisms noninvasively. Here, we examined whether this modality could reach a sufficient sensitivity to allow evaluation of the regeneration process of enhanced green fluorescent protein (eGFP)-labeled muscle precursors (myoblasts). Using a basic FLI station, we were able to detect clear fluorescence signals generated by 40,000 labeled cells injected into a tibialis anterior (TA) muscle of mouse. We observed that the signal declined to approximately 25% on the 48 hours of cell injection followed by a recovery starting at the second day and reached a peak of approximately 45% of the original signal by the 7th day, suggesting that the survived population underwent a limited run of proliferation before differentiation. To assess whether transplanted myoblasts could form satellite cells, we injured the transplanted muscles repeatedly with cardiotoxin. We observed a recovery of fluorescence signal following a disappearance of the signal after each cardiotoxin injection. Histology results showed donor-derived cells located underneath basal membrane and expressing Pax7, confirming that the regeneration observed by imaging was indeed mediated by donor-derived satellite cells. Our results show that FLI is a powerful tool that can extend our ability to unveil complicated biological processes such as stem cell-mediated regeneration.
Collapse
|
23
|
Kallestad KM, McLoon LK. Defining the heterogeneity of skeletal muscle-derived side and main population cells isolated immediately ex vivo. J Cell Physiol 2010; 222:676-84. [PMID: 20020527 DOI: 10.1002/jcp.21989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myoblast transfer therapy for Duchenne muscular dystrophy (DMD) largely fails due to cell death and inability of transplanted cells to engraft in diseased muscles. One method attempting to enrich for cell subpopulations is the Hoechst 33342 dye exclusion assay, yielding a side population (SP) thought to be progenitor enriched and a main population (MP). However, in vitro and transplant studies yielded inconsistent results relative to downstream progeny. Cell surface markers expressed by skeletal muscle-derived MP and SP cells have not been fully characterized directly ex vivo. Using flow cytometry, MP and SP cells were characterized based on their expression of several well-accepted progenitor cell antigens. Both the MP and SP populations are heterogeneous and overlapping in the cells they contain. The percentages of cells in each population vary with species and specific muscle examined. MP and SP populations contain both satellite and multipotent progenitor cells, based on expression of CD34, Sca-1, Pax7, and M-cadherin. Thus, isolation using this procedure cannot be used to predict downstream differentiation outcomes, and explains the conflicting literature on these cells. Hoechst dye also results in significant mortality of sorted cells. As defined subpopulations are easily obtained using flow cytometry, sorting immediately ex vivo based on accepted myogenic precursor cell markers will yield superior results in terms of cell homogeneity for transplantation therapy.
Collapse
Affiliation(s)
- Kristen M Kallestad
- Department of Ophthalmology and Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
24
|
Gheysens O, Lin S, Cao F, Wang D, Chen IY, Rodriguez-Porcel M, Min JJ, Gambhir SS, Wu JC. Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 2009; 8:163-70. [PMID: 16555032 PMCID: PMC4161130 DOI: 10.1007/s11307-006-0038-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE The therapeutic benefits of cell transplantation may depend on the survival of sufficient numbers of grafted cells. We evaluate four potent immunosuppressive medications aimed at preventing acute donor cell death. PROCEDURES AND RESULTS Embryonic rat H9c2 myoblasts were stably transduced to express firefly luciferase reporter gene (H9c2-Fluc). H9c2-Fluc cells (3x10(6)) were injected into thigh muscles of Sprague-Dawley rats (N=30) treated with cyclosporine, dexamethasone, mycophenolate mofetil, tacrolimus, or saline from day -3 to day +14. Longitudinal optical bioluminescence imaging was performed over two weeks. Fluc activity was 40.0+/-12.1% (dexamethasone), 30.5+/-12.5% (tacrolimus), and 21.5+/-3.5% (mycophenolate) vs. 12.0+/-5.0% (control) and 8.3+/-5.0% (cyclosporine) at day 4 (P<0.05). However, by day 14, cell signals had decreased drastically to <10% for all groups despite drug therapy. CONCLUSION This study demonstrates the ability of optical molecular imaging for tracking cell survival noninvasively and raises important questions with regard to the overall efficacy of immunosuppressives for prolonging transplanted cell survival.
Collapse
Affiliation(s)
- Olivier Gheysens
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Shuan Lin
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Feng Cao
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Dongxu Wang
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Ian Y. Chen
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | | | - Jung J. Min
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
| | - Sanjiv S. Gambhir
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Joseph C. Wu
- Department of Radiology and Bio-X Program, Stanford University, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
25
|
Burdzińska A, Bartoszuk U, Orzechowski A. Preincubation With bFGF but Not Sodium Ascorbate Improves Efficiency of Autologous Transplantation of Muscle-derived Cells Into Urethral Wall. Urology 2009; 73:736-42. [DOI: 10.1016/j.urology.2008.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/08/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|
26
|
Baligand C, Vauchez K, Fiszman M, Vilquin JT, Carlier PG. Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs. Gene Ther 2009; 16:734-45. [PMID: 19282845 DOI: 10.1038/gt.2009.12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1H-NMR (nuclear magnetic resonance) imaging is regularly proposed to non-invasively monitor cell therapy protocols. Prior to transplantation, cells must be loaded with an NMR contrast agent (CA). Most studies performed so far make use of superparamagnetic iron oxide particles (SPIOs), mainly for favorable detection sensitivity. However, in the case of labeled cell death, SPIO recapture by inflammatory cells might introduce severe bias. We investigated whether NMR signal changes induced by preloading with SPIOs or the low molecular weight gadolinium (Gd)-DTPA accurately monitored the outcome of transplanted cells in a murine model of acute immunologic rejection. CA-loaded human myoblasts were grafted in the tibialis anterior of C57BL/6 mice. NMR imaging was repeated regularly until 3 months post-transplantation. Label outcome was evaluated by the size of the labeled area and its relative contrast to surrounding tissue. In parallel, immunohistochemistry assessed the presence of human cells. Data analysis revealed that CA-induced signal changes did not strictly reflect the graft status. Gd-DTPA label disappeared rapidly yet with a 2-week delay compared with immunohistochemical evaluation. More problematically, SPIO label was still visible after 3 months, grossly overestimating cell survival (<1 week). SPIOs should be used with extreme caution to evaluate the presence of grafted cells in vivo and could hardly be recommended for the long-term monitoring of cell transplantation protocols.
Collapse
Affiliation(s)
- C Baligand
- Institute of Myology, NMR laboratory, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Guo C, Haider HK, Wang C, Tan RS, Shim WS, Wong P, Sim EK. Myoblast Transplantation for Cardiac Repair: From Automyoblast to Allomyoblast Transplantation. Ann Thorac Surg 2008; 86:1841-8. [DOI: 10.1016/j.athoracsur.2008.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/14/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
28
|
Central Tolerance to Myogenic Cell Transplants Does Not Include Muscle Neoantigens. Transplantation 2008; 85:1791-801. [DOI: 10.1097/tp.0b013e31817726bc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 2007; 84:1307-15. [PMID: 18049116 DOI: 10.1097/01.tp.0000288322.94252.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several cell-transplantation strategies implicate the injection of cells into tissues. Avascular accumulations of implanted cells are then formed. Because the diffusion of oxygen and nutrients from the surrounding tissue throughout the implanted cell accumulations may be limited, central ischemic necrosis could develop. We analyzed this possibility after myoblast transplantation in nonhuman primates. METHODS Macaca monkeys were injected intramuscularly with different amounts of myoblasts per single site. These sites were sampled 1 hr later and at posttransplantation days 1, 3, 5, and 7 and analyzed by histological techniques. RESULTS One day posttransplantation, the largest pockets of implanted cells showed cores of massive necrosis. The width of the peripheral layer of living cells was approximately 100-200 microm. We thus analyzed the relationship between the amount of myoblasts injected per site and the volume of ischemic necrosis. Delivering 0.1 x 10(6) and 0.3 x 10(6) myoblasts did not produce ischemic necrosis; pockets of 1 x 10(6), 3 x 10(6), 10 x 10(6), and 20 x 10(6) myoblasts exhibited, respectively, a mean of 2%, 9%, 41%, and 59% of central necrosis. Intense macrophage infiltration took place in the muscle, invading the accumulations of necrotic cells and eliminating them by posttransplantation days 5 to 7. CONCLUSIONS The desire to create more neoformed tissue by delivering more cells per injection site is confronted with the fact that the acute survival of the implanted cells is restricted to the peripheral layer that can profit of the diffusion of oxygen and nutriments from the surrounding recipient's tissue.
Collapse
|
30
|
Guo C, Haider HK, Shim WSN, Tan RS, Ye L, Jiang S, Law PK, Wong P, Sim EKW. Myoblast-based cardiac repair: xenomyoblast versus allomyoblast transplantation. J Thorac Cardiovasc Surg 2007; 134:1332-9. [PMID: 17976470 DOI: 10.1016/j.jtcvs.2007.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/09/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE We sought to investigate immune cell kinetics in relation to skeletal myoblast survival and heart function improvement after nonautologous skeletal myoblast transplantation in a rat model of myocardial infarction. METHODS One week after myocardial infarction, 208 Wistar rats were grouped into group 1 (n = 24, receiving 150 muL of medium only), group 2 (n = 24, receiving 150 muL of medium and cyclosporine [INN: ciclosporin]), group 3 (n = 40, human skeletal myoblast transplantation), group 4 (n = 40, human skeletal myoblast transplantation with cyclosporine treatment), group 5 (n = 40, rat skeletal myoblast transplantation), and group 6 (n = 40, rat skeletal myoblast transplantation with cyclosporine treatment). The hearts were harvested at 10 minutes and 1, 4, 7, and 28 days after cell transplantation. Skeletal myoblast survival was confirmed by means of immunohistochemical studies and quantified by using real-time polymerase chain reaction. Host immune responses were assessed by immunostaining for macrophages and CD4+ and CD8+ lymphocytes. Heart function was evaluated by means of echocardiographic analysis. RESULTS The majority of macrophages and lymphocytes infiltrated in the acute phase (from day 1 to day 7) and then subsided by day 28. The donor skeletal myoblasts survived and differentiated well in all skeletal myoblast transplantation groups. Allogeneic skeletal myoblasts showed a superior survival rate than xenogeneic skeletal myoblasts (P < .01). Cyclosporine inhibited the infiltration of the immunocytes, enhanced skeletal myoblast survival, and improved heart performance compared with that seen in the groups not receiving cyclosporine treatment (P < .05). CONCLUSIONS Allomyoblasts survive better than do xenomyoblasts after transplantation into infarcted myocardium. After inhibition of immunocyte infiltration by means of immunosuppressive treatment, skeletal myoblast survival is enhanced, with improved heart performance. These findings suggest the feasibility of nonautologous myoblast transplantation with immunosuppressive treatment.
Collapse
Affiliation(s)
- Changfa Guo
- Department of Surgery, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bouchentouf M, Skuk D, Tremblay JP. Early and massive death of myoblasts transplanted into skeletal muscle: responsible factors and potential solutions. Curr Opin Organ Transplant 2007. [DOI: 10.1097/mot.0b013e3282f19f20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Mills P, Dominique JC, Lafrenière JF, Bouchentouf M, Tremblay JP. A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success. Am J Transplant 2007; 7:2247-59. [PMID: 17845560 DOI: 10.1111/j.1600-6143.2007.01927.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myogenic precursor cell (MPC) transplantation is a good strategy to introduce dystrophin expression in muscles of Duchenne muscular dystrophy (DMD) patients. Insulin-like growth factor (IGF-1) promotes MPC activities, such as survival, proliferation, migration and differentiation, which could enhance the success of their transplantation. Alternative splicing of the IGF-1 mRNA produces different muscle isoforms. The mechano growth factor (MGF) is an isoform, especially expressed after a mechanical stress. A 24 amino acids peptide corresponding to the C-terminal part of the MGF E domain (MGF-Ct24E peptide) was synthesized. This peptide had been shown to enhance the proliferation and delay the terminal differentiation of C(2)C(12) myoblasts. The present study showed that the MGF-Ct24E peptide improved human MPC transplantation by modulating their proliferation and differentiation. Indeed, intramuscular or systemic delivery of this synthetic peptide significantly promoted engraftment of human MPCs in mice. In vitro experiments demonstrated that the MGF-Ct24E peptide enhanced MPC proliferation by a different mechanism than the binding to the IGF-1 receptor. Moreover, MGF-Ct24E peptide delayed human MPC differentiation while having no outcome on survival. Those combined effects are probably responsible for the enhanced transplantation success. Thus, the MGF-Ct24E peptide is an interesting agent to increase MPC transplantation success in DMD patients.
Collapse
Affiliation(s)
- P Mills
- Unité de recherche en Génétique humaine, Centre Hospitalier de l'Université Laval, Ste-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
33
|
Boldrin L, Elvassore N, Malerba A, Flaibani M, Cimetta E, Piccoli M, Baroni MD, Gazzola MV, Messina C, Gamba P, Vitiello L, De Coppi P. Satellite cells delivered by micro-patterned scaffolds: a new strategy for cell transplantation in muscle diseases. ACTA ACUST UNITED AC 2007; 13:253-62. [PMID: 17504060 DOI: 10.1089/ten.2006.0093] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myoblast transplantation is a potentially useful therapeutic tool in muscle diseases, but the lack of an efficient delivery system has hampered its application. Here we have combined cell biology and polymer processing to create an appropriate microenvironment for in vivo transplantation of murine satellite cells (mSCs). Cells were prepared from single muscle fibers derived from C57BL/6-Tgn enhanced green fluorescent protein (GFP) transgenic mice. mSCs were expanded and seeded within micro-patterned polyglycolic acid 3-dimensional scaffolds fabricated using soft lithography and thermal membrane lamination. Myogenicity was then evaluated in vitro using immunostaining, flow cytometry, and reverse transcription polymerase chain reaction analyses. Scaffolds containing mSCs were implanted in pre-damaged tibialis anterior muscles of GFP-negative syngenic mice. Cells detached from culture dishes were directly injected into contra-lateral limbs as controls. In both cases, delivered cells participated in muscle regeneration, although scaffold-implanted muscles showed a much higher number of GFP-positive fibers in CD57 mice. These findings suggest that implantation of cellularized scaffolds is better than direct injection for delivering myogenic cells into regenerating skeletal muscle.
Collapse
Affiliation(s)
- Luisa Boldrin
- Stem Cell Processing Laboratory, Department of Pediatrics, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sim EKW, Ye L, Haider HK. New strategy for cardiac repair: genetically modified skeletal myoblasts. Asian Cardiovasc Thorac Ann 2007; 15:183-4. [PMID: 17540983 DOI: 10.1177/021849230701500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
|
36
|
Wisel S, Chacko SM, Kuppusamy ML, Pandian RP, Khan M, Kutala VK, Burry RW, Sun B, Kwiatkowski P, Kuppusamy P. Labeling of skeletal myoblasts with a novel oxygen-sensing spin probe for noninvasive monitoring of in situ oxygenation and cell therapy in heart. Am J Physiol Heart Circ Physiol 2006; 292:H1254-61. [PMID: 17142337 DOI: 10.1152/ajpheart.01058.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the labeling (internalization) of skeletal myoblasts (SMs) with a novel class of oxygen-sensing paramagnetic spin probe for noninvasive tracking and in situ monitoring of oxygenation in stem cell therapy using electron paramagnetic resonance (EPR) spectroscopy. SM cells were isolated from thigh muscle biopsies of mice and propagated in culture. Labeling of SM cells with the probe was achieved by coincubating the cells with submicron-sized (270 +/- 120 nm) particulates of the probe in culture for 48 h. The labeling had no significant effect on the viability or proliferation of the cells. The SM cells labeled with the probe were transplanted in the infarcted region of mouse hearts. The engraftment of the transplanted cells in the infarct region was verified by using MY-32 staining for skeletal myocytes. The in situ Po(2) in the heart was determined noninvasively and repeatedly for 4 wk after transplantation. The results showed significant enhancement of myocardial oxygenation at the site of cell transplant compared with untreated control. In conclusion, labeling of SM cells with the oxygen-sensing spin probe offers a unique opportunity for the noninvasive monitoring of transplanted cells as well as in situ tissue Po(2) in infarcted mouse hearts.
Collapse
Affiliation(s)
- Sheik Wisel
- Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Division of Cardiothoracic Surgery, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ye L, Haider HK, Sim EKW. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood) 2006; 231:8-19. [PMID: 16380640 DOI: 10.1177/153537020623100102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.
Collapse
Affiliation(s)
- Lei Ye
- National University Medical Institute, National University of Singapore, Singapore 117597
| | | | | |
Collapse
|
38
|
Maurel A, Azarnoush K, Sabbah L, Vignier N, Le Lorc'h M, Mandet C, Bissery A, Garcin I, Carrion C, Fiszman M, Bruneval P, Hagege A, Carpentier A, Vilquin JT, Menasché P. Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 2005; 80:660-5. [PMID: 16177642 DOI: 10.1097/01.tp.0000172178.35488.31] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cell death remains a major limitation of skeletal myoblast (SM) transplantation but the patterns of cell survival and proliferation in heart and their potential modulation by thermic stresses like heat shock (HS) and cryopreservation (Cryo) are still incompletely characterized. METHODS To track SMs in situ, we developed a dual-marker system based on the semiconservative expression of the foreign soluble protein, beta-Galactosidase (beta-Gal) and the constitutive expression of the Y chromosome in a myocardial infarction model. Control medium or Lewis male rat SMs (fresh or subjected to Cryo or HS) were injected in Lewis female rats. RESULTS There was a massive cell loss early after transplantation in the fresh group, which was only partially compensated for by a subsequent proliferation. Conversely, both Cryo and HS significantly improved early cell survival but blunted subsequent proliferation so that, at 15 days posttransplantation, the total number of engrafted donor-derived Y-positive cells did not differ significantly between the three groups. Most of them expressed a skeletal muscle phenotype. CONCLUSIONS These data confirm the high death rate of in-scar transplanted myoblasts, demonstrate the ability of those that survive to proliferate and differentiate along the myogenic pathway but do not support the efficacy of either Cryo or HS for increasing the ultimate magnitude of myoblast engraftment.
Collapse
Affiliation(s)
- Agnès Maurel
- 1 INSERM U633, Laboratoire d'Etude des Greffes et Prothèses Cardiaques, Hôpital Broussais, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cao B, Deasy BM, Pollett J, Huard J. Cell Therapy for Muscle Regeneration and Repair. Phys Med Rehabil Clin N Am 2005; 16:889-907, viii. [PMID: 16214050 DOI: 10.1016/j.pmr.2005.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Baohong Cao
- Department of Orthopaedic Surgery, University of Pittsburgh, Growth and Development Laboratory, Children's Hospital of Pittsburgh, 4100 Rangos Research Center, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
40
|
Brimah K, Ehrhardt J, Mouly V, Butler-Browne GS, Partridge TA, Morgan JE. Human muscle precursor cell regeneration in the mouse host is enhanced by growth factors. Hum Gene Ther 2005; 15:1109-24. [PMID: 15610611 DOI: 10.1089/hum.2004.15.1109] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to optimize human muscle formation in vivo from implanted human muscle precursor cells. We transplanted donor muscle precursor cells (MPCs) prepared from postnatal or fetal human muscle into immunodeficient host mice and showed that irradiation of host muscle significantly enhanced muscle formation by donor cells. The amount of donor muscle formed in cryodamaged host muscle was increased by exposure of donor cells to growth factors before their implantation into injured host muscle. Insulin-like growth factor type I (IGF-I) significantly increased the amount of muscle formed by postnatal human muscle cells, but not by fetal human MPCs. However, treatment of fetal muscle cells with IGF-I, in combination with basic fibroblast growth factor and plasmin, significantly increased the amount of donor muscle formed. In vivo, human MPCs formed mosaic human-mouse muscle fibers, in which each human myonucleus was associated with a zone of human sarcolemmal protein spectrin.
Collapse
Affiliation(s)
- K Brimah
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, Imperial College, London W12 ONN, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R, Dugré FJ, Lachance JG, Deschênes L, Hélène S, Sylvain M, Tremblay JP. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004; 9:475-82. [PMID: 15038390 DOI: 10.1016/j.ymthe.2003.11.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Three Duchenne muscular dystrophy (DMD) patients received injections of myogenic cells obtained from skeletal muscle biopsies of normal donors. The cells (30 x 10 (6)) were injected in 1 cm3 of the tibialis anterior by 25 parallel injections. We performed similar patterns of saline injections in the contralateral muscles as controls. The patients received tacrolimus for immunosuppression. Muscle biopsies were performed at the injected sites 4 weeks later. We observed dystrophin-positive myofibers in the cell-grafted sites amounting to 9 (patient 1), 6.8 (patient 2), and 11% (patient 3). Since patients 1 and 2 had identified dystrophin-gene deletions these results were obtained using monoclonal antibodies specific to epitopes coded by the deleted exons. Donor dystrophin was absent in the control sites. Patient 3 had exon duplication and thus specific donor-dystrophin detection was not possible. However, there were fourfold more dystrophin-positive myofibers in the cell-grafted than in the control site. Donor-dystrophin transcripts were detected by RT-PCR (using primers reacting with a sequence int eh deleted exons) only in the cell-grafted sites in patients 1 and 2. Dystrophin transcripts were more abundant in the cell-grafted than in the control site in patient 3. Therefore, significant dystrophin expression can be obtained in teh skeletal muscles of DMD patients following specific conditions of cell delivery and immunosuppression.
Collapse
Affiliation(s)
- Daniel Skuk
- Human Genetic Research Unit, laval Unibersity Hospital Center, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haider HK, Jiang SJ, Ye L, Aziz S, Law PK, Sim EKW. Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. Transplant Proc 2004; 36:232-5. [PMID: 15013354 DOI: 10.1016/j.transproceed.2003.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We studied the survival of human myoblast for cellular myocardial reconstruction in a porcine model of chronic myocardial ischemia with immune tolerance using transient immunosuppression. A porcine model of chronic cardiac ischemia was created in 10 pigs (DMEM medium-injected n = 4; myoblast transplanted n = 6) by clamping ameroid ring around left circumflex coronary artery. Three weeks later, 3 x 10(8) human myoblasts carrying lac-z reporter gene were transplanted in multiple sites (0.25 mL each) into the left ventricular wall. Immunosuppression was achieved with 5 mg/kg cyclosporine for 6 weeks after cell transplantation. After animals were euthanized between 6 and 30 weeks after cell transplantation; the heart was removed for histological studies. Discontinuation of immunosuppression after 6 weeks of cell transplantation did not result in donor cell rejection. The lac-z-positive donor cells were detected in porcine host cardiac tissue for up to 30 weeks posttransplantation, expressing human skeletal myosin heavy chain. The results highlight the effectiveness of transient immunosuppression for myoblast transplantation for cardiac repair.
Collapse
Affiliation(s)
- H Kh Haider
- National University Medical Institutes (H.K.H.), National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
43
|
Cao B, Bruder J, Kovesdi I, Huard J. Muscle stem cells can act as antigen-presenting cells: implication for gene therapy. Gene Ther 2004; 11:1321-30. [PMID: 15175641 DOI: 10.1038/sj.gt.3302293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research has shown that the use of a muscle-specific promoter can reduce immune response and improve gene transfer to muscle fibers. We investigated the efficiency of direct and ex vivo gene transfer to the skeletal muscles of 6- to 8-week-old mdx mice by using two adenoviral vectors: adenovirus (AD) encoding the luciferase gene under the cytomegalovirus (CMV) promoter (ADCMV) and AD encoding the same gene under the muscle creatine kinase (MCK) promoter (ADMCK). Direct intramuscular injection of ADMCK triggered a lower immune response that enabled more efficient delivery and more persistent expression of the transgene than did ADCMV injection. Similarly, ex vivo gene transfer using ADCMV-transduced muscle-derived stem cells (MDSCs) induced a stronger immune response and led to shorter transgene expression than did ex vivo gene transfer using ADMCK-transduced MDSCs. This immune response was due to the release of the antigen after MDSC death or to the ADCMV-transduced MDSCs acting as antigen-presenting cells (APCs) by expressing the transgene and rapidly initiating an immune response against subsequent viral inoculation. The use of a muscle-specific promoter that restricts transgene expression to differentiated muscle cells could prevent MDSCs from becoming APCs, and thereby could improve the efficiency of ex vivo gene transfer to skeletal muscle.
Collapse
Affiliation(s)
- B Cao
- Growth and Development Laboratory, Children's Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
44
|
Haider HK, Tan ACK, Aziz S, Chachques JC, Sim EKW. Myoblast transplantation for cardiac repair: a clinical perspective. Mol Ther 2004; 9:14-23. [PMID: 14741773 DOI: 10.1016/j.ymthe.2003.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The incidence of heart failure is achieving epidemic proportions. Adult human myocytes cannot regenerate because these cells do not re-enter the cell cycle. In patients with heart failure, myoblast transplantation is emerging as a potential therapeutic option to augment the function of remaining myocytes. Both skeletal myoblasts and autologous bone marrow cell transplantation, after intensive preclinical experimental animal studies, have entered phase I safety studies in humans. Most of these clinical trials have involved small groups of patients and cell transplantation was carried out as an adjunct to coronary revascularization. Preliminary results show that the procedure is safe and leads to improved myocardial function. This paper reviews and summarizes the outcome of these phase I trials involving skeletal myoblast transplantation.
Collapse
Affiliation(s)
- Husnain Kh Haider
- National University Medical Institutes, National University of Singapore, 119074
| | | | | | | | | |
Collapse
|
45
|
Sammels LM, Bosio E, Fragall CT, Grounds MD, van Rooijen N, Beilharz MW. Innate inflammatory cells are not responsible for early death of donor myoblasts after myoblast transfer therapy. Transplantation 2004; 77:1790-7. [PMID: 15223893 DOI: 10.1097/01.tp.0000131150.76841.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Myoblast transfer therapy (MTT) is a cell-based gene therapy representing a potential treatment for Duchenne muscular dystrophy. The rapid disappearance of donor myoblasts from transplanted muscles after MTT is one of the most controversial and significant obstacles facing research in this area. Dystrophin-deficient muscles show constitutively high levels of inflammation, thus necessitating an examination of whether inflammatory cells, specifically natural killer (NK) cells, neutrophils, and macrophages, within dystrophic muscle are responsible for poor graft survival. METHODS Female mdx mice were treated with RB6-8C5 monoclonal antibody, PK136 monoclonal antibody, or clodronate liposomes to systemically deplete neutrophils, NK cells, and macrophages, respectively. After each depletion regimen, the mice and age-matched controls received 5.0 x 10 male myoblasts injected longitudinally into each tibialis anterior muscle. Donor myoblast survival was assessed by Y-chromosome specific quantitative real-time polymerase chain reaction analysis. RESULTS.: The systemic depletion of host neutrophils and NK cells resulted in a transient improvement in donor myoblast survival at 72 hr and 7 days post-MTT, respectively. Systemic depletion of macrophages had no significant beneficial effect on myoblast survival. Overall, the number of detectable male donor myoblasts was similar at time 0 and 1 hr post-MTT; however, there was significant loss by 24 hr (approximately 50%-70%) followed by a continual decline in donor cell numbers. CONCLUSIONS Neutrophils and macrophages do not seem to play a major role in the rapid death of donor myoblasts after transplantation into dystrophic muscle. NK cells similarly seem to have no significant effect, contrary to earlier findings reported by our group.
Collapse
Affiliation(s)
- Leanne M Sammels
- Discipline of Microbiology (M502), School of Biomedical and Chemical Sciences, University of Western Australia, QEII Medical Center, Nedlands, Perth, W.A. 6009, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Suzuki K, Murtuza B, Beauchamp JR, Smolenski RT, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 2004; 18:1153-5. [PMID: 15155562 DOI: 10.1096/fj.03-1308fje] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival and proliferation of skeletal myoblasts within the cardiac environment are crucial to the therapeutic efficacy of myoblast transplantation to the heart. We have analyzed the early dynamics of myoblasts implanted into the myocardium and investigated the mechanisms underlying graft attrition. At 10 min after implantation of [14C]thymidine-labeled male myoblasts into female mice hearts, 14C measurement showed that 39.2 +/- 3.0% of the grafted cells survived, and this steadily decreased to 16.0 +/- 1.7% by 24 h and to 7.4 +/- 0.9% by 72 h. PCR of male-specific Smcy gene calculated that the total (surviving plus proliferated) number of donor-derived cells was 18.3 +/- 1.6 and 23.3 +/- 1.3% at 24 and 72 h, respectively, indicating that proliferation of the surviving cells began after 24 h. Acute inflammation became prominent by 24 h and was reduced by 72 h as indicated by myeloperoxidase activity and histological findings. Multiplex RT-PCR revealed corresponding changes in IL-1beta, TGF-beta, IL-6, and TNF-alpha expression. Treatment with CuZn-superoxide dismutase attenuated the initial rapid death and resulted in enhanced cell numbers afterward, giving a twofold increased total number at 72 h compared with the nontreatment. This effect was associated with reduced inflammatory response, suggesting a causative role for superoxide in the initial rapid graft death and subsequent inflammation. These data describe the early dynamics of myoblasts implanted into the myocardium and suggest that initial oxidative stress and following inflammatory response may be important mechanisms contributing to acute graft attrition, both of which could be potential therapeutic targets to improve the efficiency of cell transplantation to the heart.
Collapse
Affiliation(s)
- Ken Suzuki
- Harefield Heart Science Centre, National Heart and Lung Institute, Harefield, Middlesex, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bouchentouf M, Benabdallah BF, Tremblay JP. MYOBLAST SURVIVAL ENHANCEMENT AND TRANSPLANTATION SUCCESS IMPROVEMENT BY HEAT-SHOCK TREATMENT IN MDX MICE. Transplantation 2004; 77:1349-56. [PMID: 15167589 DOI: 10.1097/01.tp.0000121503.01535.f5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy is a disease caused by the incapacity to synthesize dystrophin, which is implicated in the maintenance of the sarcolemma integrity. Myoblast transplantation is a potential treatment of this disease. However, most of the transplanted cells die very rapidly after their injection. Heat-shock proteins (HSPs) are over-expressed when cells undergo various types of stresses. Our goal was thus to investigate whether the expression of HSPs (HSP70 in particular) could protect myoblasts from death after intramuscular injection. METHODS HSP70 expression was induced by warming the cells at 42 degrees C for 60 minutes. HSP70 over-expression was quantified by Western blot analysis. The in vitro effect of HSPs on cell survival was evaluated by fluorescence-activated cell sorter analysis using the Hoescht/propidium iodide-labeling technique, and their in vivo effects were investigated by transplanting TnI-LacZ myoblasts labeled with [methyl-14C] thymidine. RESULTS Western blots indicated a sevenfold over-expression of the HSP70 after the heat-shock treatment. In vitro, the heat-shock treatment protected 18% of the cells from staurosporine- (1 microM) induced apoptosis. HSPs also protected 10% of the cells from death induced by either tumor necrosis factor-alpha (30 ng/mL) or glucose oxydase (0.1 U/mL). In vivo, the treatment improved the cell survival by twofold 5 days after the graft and increased by fourfold the long-term graft success. CONCLUSIONS The heat-shock treatment is a practical approach for improving the success of myoblast transplantation; in fact, using this kind of treatment, there is no need to genetically modify the cells before their transplantation.
Collapse
Affiliation(s)
- Manaf Bouchentouf
- Human Genetics, CHUQ-CHUL, Laval University, Ste-Foy, Quebec, Canada
| | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Cell therapies for inherited myopathies are based on the implantation of normal or genetically corrected myogenic cells into the body. This review summarizes the recent progress in this field, systematized according to the factors important for success. RECENT FINDINGS In the choice of donor cells, myoblasts derived from satellite cells remain the best choice. Some studies on the population of muscle-derived stem cells in mice suggested that these cells may have some advantages over myoblasts; however, no results supporting this advantage have been presented in a primate model. Recent studies on bone marrow transplantation as a systemic source of myogenic precursors for the treatment of myopathies were disappointing. Concerning donor cell delivery, intramuscular myoblast injection remains the only way that can significantly introduce exogenous myogenic cells into the muscles. A recent study in primates showed some parameters of myoblast injection that could be useful in the human. Progress was made in mice to understand the factors that could favor the migration of the donor myoblasts in the host muscles. Concerning donor cell survival, analysis of immune cell infiltration dynamics allowed a better understanding of the factors implicated in early donor cell death. Progress was made on the control of acute rejection for myoblast transplantation in primates. So far, few mouse experiments have advanced the field of tolerance induction toward myogenic cells. SUMMARY Myoblast transplantation (intramuscular injection of satellite cell-derived myoblasts) currently remains the only cell-based therapy that has produced promising results in the context of a preclinical model such as the nonhuman primate.
Collapse
Affiliation(s)
- Daniel Skuk
- Unité de recherche en Génétique humaine, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | | |
Collapse
|
49
|
Skuk D, Caron NJ, Goulet M, Roy B, Tremblay JP. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol 2003; 62:951-67. [PMID: 14533784 DOI: 10.1093/jnen/62.9.951] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We conducted a study in mice to reevaluate and clarify many aspects of the early survival of muscle cells following transplantation. Male mouse muscle cells (primary-cultures and T-antigen-immortalized clones) labeled with [14C]thymidine and beta-galactosidase were injected into female muscles. Each label was detected in the muscles after different time periods. TUNEL, alizarin red, and immunodetection of active caspase-3 were done in muscle sections. The donor cell labels disappeared from the muscles following donor cell death, but this was not instantaneous and even if the donor cells were killed before transplantation, the first 6 hours were not enough to clear [14C]thymidine and Y chromosome. Using the cell pellet before injection as the 100% baseline for cells injected to evaluate cell death can lead to misinterpretations: the Y-chromosome band was 5-fold stronger than that of a muscle injected with cells, irrespective of whether the cells were previously killed or not. There was no evidence of an immediate massive donor cell death. Necrosis (detected by alizarin red) and apoptosis (detected by active caspase-3) were present among the donor myoblasts following transplantation. Necrosis seemed to be the most important mechanism during the first hours. T-antigen immortalized cells died earlier and more massively than primary-cultured cells, but the surviving cells proliferated more. Indeed, they seemed to exhibit more apoptosis and they triggered a more rapid CD8+ cell infiltration. As a result of our findings, many concepts concerning the early donor cell death following myoblast transplantation must be reconsidered.
Collapse
Affiliation(s)
- Daniel Skuk
- Unité de recherche en Génétique humaine, Centre de Recherche du Centre Hospitalier de l'Université Laval, CHUL du CHUQ, Ste-Foy, Québec, Canada.
| | | | | | | | | |
Collapse
|