1
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Wu L, Zhao KQ, Wang W, Cui LN, Hu LL, Jiang XX, Shuai J, Sun YP. Nuclear receptor coactivator 6 promotes HTR-8/SVneo cell invasion and migration by activating NF-κB-mediated MMP9 transcription. Cell Prolif 2020; 53:e12876. [PMID: 32790097 PMCID: PMC7507070 DOI: 10.1111/cpr.12876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives NCOA6 is a transcription coactivator; its deletion in mice results in growth retardation and lethality between 8.5 and 12.5 dpc with defects in the placenta. However, the transcription factor(s) and the mechanism(s) involved in the function of NCOA6 in placentation have not been elucidated. Here, the roles of NCOA6 in human cytotrophoblast invasion and migration were studied. Materials and Methods Human placenta tissues were collected from normal pregnancies and pregnancies complicated by early‐onset severe preeclampsia (sPE). Immunofluorescence, RT‐qPCR and Western blotting were used to determine NCOA6 expression. Transwell invasion/migration assays were performed to explore whether NCOA6 knockdown affected human placenta‐derived HTR‐8/SVneo cell invasion/migration. Gelatin zymography was performed to examine the change in the gelatinolytic activities of secreted MMP2 and MMP9. Luciferase reporter assays were used to explore whether NCOA6 coactivated NF‐κB‐mediated MMP9 transcription. Results NCOA6 is mainly expressed in the human placental trophoblast column, as well as in the EVTs. HTR‐8/SVneo cell invasion and migration were significantly attenuated after NCOA6 knockdown, and the secretion of MMP9 was decreased due to transcriptional suppression. NCOA6 was further found to coactivate NF‐κB‐mediated MMP9 transcription. Moreover, expression of NCOA6 was impaired in placentas of patients complicated by early‐onset sPE. Conclusions Thus, we demonstrated that NCOA6 is important for cytotrophoblast invasion/migration, at least partially, by activating NF‐κB‐mediated MMP9 transcription; the downregulation of NCOA6 may contribute to the pathogenesis of early‐onset sPE.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Qing Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Li Hu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Shuai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
4
|
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-alpha bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.
Collapse
|
5
|
Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. NUCLEAR RECEPTOR SIGNALING 2010; 8:e002. [PMID: 20414453 PMCID: PMC2858266 DOI: 10.1621/nrs.08002] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.
Collapse
Affiliation(s)
| | | | | | - Janardan K. Reddy
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Matsumoto K, Huang J, Viswakarma N, Bai L, Jia Y, Zhu YT, Yang G, Borensztajn J, Rao MS, Zhu YJ, Reddy JK. Transcription coactivator PBP/MED1-deficient hepatocytes are not susceptible to diethylnitrosamine-induced hepatocarcinogenesis in the mouse. Carcinogenesis 2009; 31:318-25. [PMID: 20007298 PMCID: PMC2812575 DOI: 10.1093/carcin/bgp306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nuclear receptor coactivator [peroxisome proliferator-activated receptor-binding protein (PBP)/mediator subunit 1 (MED1)] is a critical component of the mediator transcription complex. Disruption of this gene in the mouse results in embryonic lethality. Using the PBP/MED1 liver conditional null (PBP/MED1ΔLiv) mice, we reported that PBP/MED1 is essential for liver regeneration and the peroxisome proliferator-activated receptor α ligand Wy-14,643-induced receptor-mediated hepatocarcinogenesis. We now examined the role of PBP/MED1 in genotoxic chemical carcinogen diethylnitrosamine (DEN)-induced and phenobarbital-promoted hepatocarcinogenesis. The carcinogenic process was initiated by a single intraperitoneal injection of DEN at 14 days of age and initiated cells were promoted with phenobarbital (PB) (0.05%) in drinking water. PBP/MED1ΔLiv mice, killed at 1, 4 and 12 weeks, revealed a striking proliferative response of few residual PBP/MED1-positive hepatocytes that escaped Cre-mediated deletion of PBP/MED1 gene. No proliferative expansion of PBP/MED1 null hepatocytes was noted in the PBP/MED1ΔLiv mouse livers. Multiple hepatocellular carcinomas (HCCs) developed in the DEN-initiated PBP/MED1fl/fl and PBP/MED1ΔLiv mice, 1 year after the PB promotion. Of interest is that all HCC developing in PBP/MED1ΔLiv mice were PBP/MED1 positive. None of the tumors was PBP/MED1 negative implying that hepatocytes deficient in PBP/MED1 are not susceptible to neoplastic conversion. HCC that developed in PBP/MED1ΔLiv mouse livers were transplantable in athymic nude mice and these maintained PBP/MED1fl/fl genotype. PBP/MED1fl/fl HCC cell line derived from these tumors expressed PBP/MED1 and deletion of PBP/MED1fl/fl allele by adeno-Cre injection into tumors caused necrosis of tumor cells. These results indicate that PBP/MED1 is essential for the development of HCC in the mouse.
Collapse
Affiliation(s)
- Kojiro Matsumoto
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Roles of histone H3-lysine 4 methyltransferase complexes in NR-mediated gene transcription. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:343-82. [PMID: 20374709 DOI: 10.1016/s1877-1173(09)87010-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation by nuclear hormone receptors (NRs) requires multiple coregulators that modulate chromatin structures by catalyzing a diverse array of posttranslational modifications of histones. Different combinations of these modifications yield dynamic functional outcomes, constituting an epigenetic histone code. This code is inscribed by histone-modifying enzymes and decoded by effector proteins that recognize specific covalent marks. One important modification associated with active chromatin structures is methylation of histone H3-lysine 4 (H3K4). Crucial roles for this modification in NR transactivation have been recently highlighted through our purification and subsequent characterization of a steady-state complex associated with ASC-2, a coactivator of NRs and other transcription factors. This complex, designated ASCOM for ASC-2 complex, contains H3K4-methyltransferase MLL3/HALR or its paralogue MLL4/ALR and represents the first Set1-like H3K4-methyltransferase complex to be reported in vertebrates. This review focuses on recent progress in our understanding of how ASCOM-MLL3 and ASCOM-MLL4 influence NR-mediated gene transcription and of their physiological function.
Collapse
|
8
|
Surapureddi S, Rana R, Reddy JK, Goldstein JA. Nuclear receptor coactivator 6 mediates the synergistic activation of human cytochrome P-450 2C9 by the constitutive androstane receptor and hepatic nuclear factor-4alpha. Mol Pharmacol 2008; 74:913-23. [PMID: 18552123 DOI: 10.1124/mol.108.048983] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6) also known as PRIP/RAP250/ASC-2 anchors a steady-state complex of cofactors and function as a transcriptional coactivator for certain nuclear receptors. This is the first study to identify NCOA6 as a hepatic nuclear factor 4alpha (HNF4alpha)-interacting protein. CYP2C9 is an important enzyme that metabolizes both commonly used therapeutic drugs and important endogenous compounds. We have shown previously that constitutive androstane receptor (CAR) (a xenobiotic-sensing receptor) up-regulates the CYP2C9 promoter through binding to a distal site, whereas HNF4alpha transcriptionally up-regulates CYP2C9 via proximal sites. We demonstrate ligand-enhanced synergistic cross-talk between CAR and HNF4alpha. We identify NCOA6 as crucial to the underlying mechanism of this cross-talk. NCOA6 was identified as an HNF4alpha-interacting protein in this study using a yeast two-hybrid screen and GST pull-down assays. Furthermore, we identified NCOA6, CAR, and other coactivators as part of a mega complex of cofactors associated with HNF4alpha in HepG2 cells. Although the interaction of NCOA6 with CAR is specifically through the first LXXLL motif of NCOA6, both LXXLL motifs are involved in its interaction with HNF4alpha. Silencing of NCOA6 abrogated the synergistic activation of the CYP2C9 promoter and the synergistic induction of the CYP2C9 gene by CAR-HNF4alpha. Chromatin immunoprecipitation analysis revealed that NCOA6 can pull down both the proximal HNF4alpha and distal CAR binding sites of the CYP2C9 promoter and provides the basis for the recruitment of other cofactors. We conclude that the coactivator NCOA6 mediates the mechanism of the synergistic activation of the CYP2C9 gene by CAR and HNF4alpha.
Collapse
Affiliation(s)
- Sailesh Surapureddi
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
9
|
Mahajan MA, Samuels HH. Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development. NUCLEAR RECEPTOR SIGNALING 2008; 6:e002. [PMID: 18301782 PMCID: PMC2254332 DOI: 10.1621/nrs.06002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 12/11/2007] [Indexed: 11/20/2022]
Abstract
NCoA6 (also referred to as NRC, ASC-2, TRBP, PRIP and RAP250) was originally isolated as a ligand-dependent nuclear receptor interacting protein. However, NCoA6 is a multifunctional coregulator or coactivator necessary for transcriptional activation of a wide spectrum of target genes. The NCoA6 gene is amplified and overexpressed in breast, colon and lung cancers. NCoA6 is a 250 kDa protein which harbors a potent N-terminal activation domain, AD1; and a second, centrally-located activation domain, AD2, which is necessary for nuclear receptor signaling. The intrinsic activation potential of NCoA6 is regulated by its C-terminal STL regulatory domain. Near AD2 is an LxxLL-1 motif which interacts with a wide spectrum of ligand-bound NRs with high-affinity. A second LxxLL motif (LxxLL-2) located towards the C-terminal region is more restricted in its NR specificity. The potential role of NCoA6 as a co-integrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known cofactors including CBP/p300. NCoA6 has been shown to associate with at least three distinct coactivator complexes containing Set methyltransferases as core polypeptides. The composition of these complexes suggests that NCoA6 may play a fundamental role in transcriptional activation by modulating chromatin structure through histone methylation. Knockout studies in mice suggest that NCoA6 is an essential coactivator. NCoA6-/- embryos die between 8.5-12.5 dpc from general growth retardation coupled with developmental defects in the heart, liver, brain and placenta. NCoA6-/- MEFs grow at a reduced rate compared to WT MEFs and spontaneously undergo apoptosis, indicating the importance of NCoA6 as a prosurvival and anti-apoptotic gene. Studies with NCoA6+/- and conditional knockout mice suggest that NCoA6 is a pleiotropic coregulator involved in growth, development, wound healing and maintenance of energy homeostasis.
Collapse
Affiliation(s)
- Muktar A Mahajan
- Department of Pharmacology, NYU School of Medicine, New York, New York, USA.
| | | |
Collapse
|
10
|
Guo D, Sarkar J, Suino-Powell K, Xu Y, Matsumoto K, Jia Y, Yu S, Khare S, Haldar K, Rao MS, Foreman JE, Monga SPS, Peters JM, Xu HE, Reddy JK. Induction of nuclear translocation of constitutive androstane receptor by peroxisome proliferator-activated receptor alpha synthetic ligands in mouse liver. J Biol Chem 2007; 282:36766-76. [PMID: 17962186 DOI: 10.1074/jbc.m707183200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferators activate nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) and enhance the transcription of several genes in liver. We report here that synthetic PPARalpha ligands Wy-14,643, ciprofibrate, clofibrate, and others induce the nuclear translocation of constitutive androstane receptor (CAR) in mouse liver cells in vivo. Adenoviral-enhanced green fluorescent protein-CAR expression demonstrated that PPARalpha synthetic ligands drive CAR into the hepatocyte nucleus in a PPARalpha- and PPARbeta-independent manner. This translocation is dependent on the transcription coactivator PPAR-binding protein but independent of coactivators PRIP and SRC-1. PPARalpha ligand-induced nuclear translocation of CAR is not associated with induction of Cyp2b10 mRNA in mouse liver. PPARalpha ligands interfered with coactivator recruitment to the CAR ligand binding domain and reduced the constitutive transactivation of CAR. Both Wy-14,643 and ciprofibrate occupied the ligand binding pocket of CAR and adapted a binding mode similar to that of the CAR inverse agonist androstenol. These observations, therefore, provide information for the first time to indicate that PPARalpha ligands not only serve as PPARalpha agonists but possibly act as CAR antagonists.
Collapse
Affiliation(s)
- Dongsheng Guo
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|