1
|
Ramesh S, Rao JS, Namsrai BE, Fisher B, Tobolt DK, Megaly M, Etheridge ML, Pruett TL, Seelig D, Murugan P, Aldaraiseh B, Finger EB, Bischof JC. Vitrification and rapid rewarming of precision-cut liver slices for pharmacological and biomedical research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627273. [PMID: 39713303 PMCID: PMC11661125 DOI: 10.1101/2024.12.08.627273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background and Aims High-throughput in vitro pharmacological toxicity testing is essential for drug discovery. Precision-cut liver slices (PCLS) provide a robust system for screening that is more representative of the complex 3D structure of the whole liver than isolated hepatocytes. However, PCLS are not available as off-the-shelf products, significantly limiting their translational potential. Cryopreservation could solve this bottleneck by effectively preserving PCLS indefinitely until their time of use. Conventional cryopreservation (slow cooling in DMSO-forming ice) results in poor PCLS viability and function and, therefore, has proven unsuitable. Here, we explore an "ice-free" cryopreservation approach called vitrification and focus on culturing and assessing PCLS for 3 days post-vitrification and rewarming, given that most acute drug toxicity tests are conducted over 24h. Methods Rat liver slices were diffusively loaded with a cryoprotective agent (CPA) cocktail consisting of EG and Sucrose. The CPA-loaded PCLS were placed on a polymer cryomesh, vitrified in liquid nitrogen (LN2), and rapidly rewarmed in CPA. The vitrified and rewarmed PCLS were subsequently cultured in a controlled volume of serum-free, chemically defined media for 3 days. Results The cryopreserved PCLS maintained high viability, morphology, function, enzymatic activity, and drug toxicity response. Results show that the vitrified PCLS perform comparably to untreated controls and significantly outperform conventionally cryopreserved PCLS in all assessments (p < 0.05). Conclusions Rapid vitrification and rewarming of PCLS using cryomesh enabled successful preservation and culture. This approach maintained high viability, function, enzymatic activity, and drug response for 3 days in culture, similar to controls.
Collapse
Affiliation(s)
| | - Joseph Sushil Rao
- Department of Surgery, University of Minnesota, MN, USA
- Schulze Diabetes Institute, University of Minnesota, MN, USA
| | | | - Benjamin Fisher
- Department of Mechanical Engineering, University of Minnesota, MN, USA
- Department of Surgery, University of Minnesota, MN, USA
| | | | | | | | | | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, MN, USA
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA
| | - Bashar Aldaraiseh
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA
| | | | - John C. Bischof
- Department of Mechanical Engineering, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
| |
Collapse
|
2
|
Sharma A, Lee CY, Namsrai BE, Han Z, Tobolt D, Rao JS, Gao Z, Etheridge ML, Garwood M, Clemens MG, Bischof JC, Finger EB. Cryopreservation of Whole Rat Livers by Vitrification and Nanowarming. Ann Biomed Eng 2023; 51:566-577. [PMID: 36183025 PMCID: PMC10315167 DOI: 10.1007/s10439-022-03064-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
Abstract
Liver cryopreservation has the potential to enable indefinite organ banking. This study investigated vitrification-the ice-free cryopreservation of livers in a glass-like state-as a promising alternative to conventional cryopreservation, which uniformly fails due to damage from ice formation or cracking. Our unique "nanowarming" technology, which involves perfusing biospecimens with cryoprotective agents (CPAs) and silica-coated iron oxide nanoparticles (sIONPs) and then, after vitrification, exciting the nanoparticles via radiofrequency waves, enables rewarming of vitrified specimens fast enough to avoid ice formation and uniformly enough to prevent cracking from thermal stresses, thereby addressing the two main failures of conventional cryopreservation. This study demonstrates the ability to load rat livers with both CPA and sIONPs by vascular perfusion, cool them rapidly to an ice-free vitrified state, and rapidly and homogenously rewarm them. While there was some elevation of liver enzymes (Alanine Aminotransferase) and impaired indocyanine green (ICG) excretion, the nanowarmed livers were viable, maintained normal tissue architecture, had preserved vascular endothelium, and demonstrated hepatocyte and organ-level function, including production of bile and hepatocyte uptake of ICG during normothermic reperfusion. These findings suggest that cryopreservation of whole livers via vitrification and nanowarming has the potential to achieve organ banking for transplant and other biomedical applications.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Charles Y Lee
- Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Diane Tobolt
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph Sushil Rao
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Garwood
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark G Clemens
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, 28223, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
- Division of Solid Organ Transplantation, University of Minnesota, 420 Delaware St. S.E., MMC 195, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Human iPSC-derived hepatocytes in 2D and 3D suspension culture for cryopreservation and in vitro toxicity studies. Reprod Toxicol 2022; 111:68-80. [DOI: 10.1016/j.reprotox.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
|
4
|
Long-term (35 years) cryopreservation of Echinococcus multilocularis metacestodes. Parasitology 2020; 147:1048-1054. [DOI: 10.1017/s003118202000075x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe metacestode of Echinococcus multilocularis is the etiological agent of alveolar echinococcosis. The metacestode stage used for research is maintained in rodents by serial passages. In order to determine whether cryopreservation of E. multilocularis metacestodes would be suitable for long-term maintenance and replace serial passages, isolates of different geographic origin were cryopreserved in 1984–1986. The aim of the current study was to test the viability of cryopreserved isolates following long-term cryopreservation (up to 35 years) and to determine the phylogenetic clades these isolates belonged to. Cryopreserved isolates were tested for viability in vitro and in vivo in gerbils. In vitro results of 5 isolates indicated protoscolex survival in 13 of 17 experiments (76%) and metacestode survival in 5 of 12 (42%) in vivo experiments. In vivo results showed ‘abortive lesions’ in 13 of the 36 animals, 15 were negative and 8 harboured proliferating metacestode tissue containing protoscoleces. Genetic analysis confirmed the isolates belonged to European, Asian and North-American clades. In conclusion, the results of the current study indicate that metacestodes of E. multilocularis are able to survive long-term cryopreservation. Therefore, cryopreservation is a suitable method for long-term storage of E. multilocularis metacestode isolates and reduces the number of experimental animals.
Collapse
|
5
|
Mutsenko V, Knaack S, Lauterboeck L, Tarusin D, Sydykov B, Cabiscol R, Ivnev D, Belikan J, Beck A, Dipresa D, Lode A, El Khassawna T, Kampschulte M, Scharf R, Petrenko AY, Korossis S, Wolkers WF, Gelinsky M, Glasmacher B, Gryshkov O. Effect of 'in air' freezing on post-thaw recovery of Callithrix jacchus mesenchymal stromal cells and properties of 3D collagen-hydroxyapatite scaffolds. Cryobiology 2020; 92:215-230. [PMID: 31972153 DOI: 10.1016/j.cryobiol.2020.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany.
| | - Sven Knaack
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, USA
| | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Ramon Cabiscol
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dmitrii Ivnev
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Jan Belikan
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Annemarie Beck
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Roland Scharf
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Alexander Yu Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Centre for Biological Engineering, Wolfson School for Mechanical Electrical and Manufacturing Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Willem F Wolkers
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
6
|
Gomes A, Defaux M, Lemee RM, Lobjois V, Ducommun B. Reversible growth arrest of 3D tumor spheroids stored in oxygen absorber-induced anoxia. Oncol Lett 2017; 15:2006-2009. [PMID: 29434901 DOI: 10.3892/ol.2017.7465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 01/24/2023] Open
Abstract
Multicellular tumor spheroids models are of increasing interest in preclinical studies and pharmacological evaluation. However, their storage and transport is often a limitation because it requires adapted and expensive procedures. Here, we propose a very simple method to store 3D spheroids, using a procedure based on oxygen absorber-induced anoxia. We report that oxygen absorbers allow generating an anoxic environment for spheroid storage in culture plates. Oxygen absorber-induced anoxia fully and reversibly arrests spheroid growth for 4 days at 37°C and up to 18 days at 4°C. We then show that the response to etoposide is comparable in spheroids preserved in conditions of absorber-induced anoxia at 4°C and spheroids kept in normoxia at 37°C. These results represent a major improvement that should simplify the storage, transport and use of 3D spheroids.
Collapse
Affiliation(s)
- Aurélie Gomes
- Institut des Technologies Avancées en Sciences du Vivant, Université de Toulouse and Centre National de la Recherche Scientifique, 31106 Toulouse, France
| | | | | | - Valérie Lobjois
- Institut des Technologies Avancées en Sciences du Vivant, Université de Toulouse and Centre National de la Recherche Scientifique, 31106 Toulouse, France
| | - Bernard Ducommun
- Institut des Technologies Avancées en Sciences du Vivant, Université de Toulouse and Centre National de la Recherche Scientifique, 31106 Toulouse, France.,Oncology Department, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| |
Collapse
|
7
|
Puschmann E, Selden C, Butler S, Fuller B. Liquidus Tracking: Large scale preservation of encapsulated 3-D cell cultures using a vitrification machine. Cryobiology 2017; 76:65-73. [DOI: 10.1016/j.cryobiol.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022]
|
8
|
Wang X, Magalhães R, Wu Y, Wen F, Gouk SS, Watson PF, Yu H, Kuleshova LL. Development of a modified vitrification strategy suitable for subsequent scale-up for hepatocyte preservation. Cryobiology 2012; 65:289-300. [PMID: 22940432 DOI: 10.1016/j.cryobiol.2012.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022]
Abstract
This work explores the design of a vitrification solution (VS) for scaled-up cryopreservation of hepatocytes, by adapting VS(basic) (40% (v/v) ethylene glycol 0.6M sucrose, i.e. 7.17 M ethylene glycol 0.6M sucrose), previously proven effective in vitrifying bioengineered constructs and stem cells. The initial section of the scale-up study involved the selection of non-penetrating additives to supplement VS(basic) and increase the solution's total solute concentration. This involved a systematic approach with a step-by-step elimination of non-penetrating cryoprotectants, based on their effect on cells after long/short term exposures to high/low concentrations of the additives alone or in combinations, on the attachment ability of hepatocytes after exposure. At a second stage, hepatocyte suspension was vitrified and functions were assessed after continuous culture up to 5 days. Results indicated Ficoll as the least toxic additive. Within 60 min, the exposure of hepatocytes to a solution composed of 9% Ficoll+0.6M sucrose (10⁻³ M Ficoll+0.6 M sucrose) sustained attachment efficiency of 95%, similar to control. Furthermore, this additive did not cause any detriment to the attachment of these cells when supplementing the base vitrification solution VS(basic). The addition of 9% Ficoll, raised the total solute concentration to 74.06% (w/v) with a negligible 10⁻³ M increase in molarity of the solution. This suggests main factor in inducing detriment to cells was the molar contribution of the additive. Vitrification protocol for scale-up condition sustained hepatocyte suspension attachment efficiency and albumin production. We conclude that although established approach will permit scaling-up of vitrification of hepatocyte suspension, vitrification of hepatocytes which are attached prior to vitrification is more effective by comparison.
Collapse
Affiliation(s)
- Xianwei Wang
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Influence of cell culture configuration on the post-cryopreservation viability of primary rat hepatocytes. Biomaterials 2012; 33:829-36. [DOI: 10.1016/j.biomaterials.2011.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
|
10
|
Zhang X, Khimji I, Shao L, Safaee H, Desai K, Keles HO, Gurkan UA, Kayaalp E, Nureddin A, Anchan RM, Maas RL, Demirci U. Nanoliter droplet vitrification for oocyte cryopreservation. Nanomedicine (Lond) 2011; 7:553-64. [PMID: 22188180 DOI: 10.2217/nnm.11.145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Oocyte cryopreservation remains largely experimental, with live birth rates of only 2-4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. MATERIALS & METHODS An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. RESULTS Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gouk SS, Jason Loh YF, Kumar SD, Watson PF, Kuleshova LL. Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil Steril 2011; 95:2399-403. [DOI: 10.1016/j.fertnstert.2011.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/03/2011] [Accepted: 03/10/2011] [Indexed: 01/15/2023]
|
12
|
Massie I, Selden C, Hodgson H, Fuller B. Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent cryoinjury using an ice nucleating agent. Tissue Eng Part C Methods 2011; 17:765-74. [PMID: 21410301 DOI: 10.1089/ten.tec.2010.0394] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Acute liver failure has high mortality due to donor organ shortages. A bioartificial liver could "bridge the gap" to transplant or spontaneous recovery. Alginate encapsulation of HepG2 cells enables cell spheroid formation, thus providing sufficient functional biomass. Cryopreservation (CryoP) of these spheroids would allow an off-the-shelf capability for unpredictable emergency use. Cell death during CryoP often results from intracellular ice formation, after supercooling. An ice nucleating agent (INA), crystalline cholesterol, was trialled to reduce supercooling and subsequent cryoinjury. MATERIALS AND METHODS Spheroids were cooled in a controlled rate freezer in 12% dimethylsulfoxide/Celsior +/- INA, and sample temperatures were recorded throughout. Viability was assessed using fluorescent staining with image analysis, cell number by nuclei count, function using assays to detect liver-specific protein synthesis and secretion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, and broad-spectrum cytochrome P450 activity. RESULTS Spheroids cryopreserved without INA displayed latent cryoinjury in the first 6 h after thawing. INA reduced supercooling during CryoP and also latent cryoinjury. Cell numbers, viability, and function as measured over 72 h post-thaw were all improved when INA was present during CryoP.
Collapse
Affiliation(s)
- Isobel Massie
- Centre for Hepatology, University College Medical School, Hampstead, London.
| | | | | | | |
Collapse
|
13
|
Current development of bioreactors for extracorporeal bioartificial liver (Review). Biointerphases 2011; 5:FA116-31. [PMID: 21171705 DOI: 10.1116/1.3521520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The research and development of extracorporeal bioartificial liver is gaining pace in recent years with the introduction of a myriad of optimally designed bioreactors with the ability to maintain long-term viability and liver-specific functions of hepatocytes. The design considerations for bioartificial liver are not trivial; it needs to consider factors such as the types of cell to be cultured in the bioreactor, the bioreactor configuration, the magnitude of fluid-induced shear stress, nutrients' supply, and wastes' removal, and other relevant issues before the bioreactor is ready for testing. This review discusses the exciting development of bioartificial liver devices, particularly the various types of cell used in current reactor designs, the state-of-the-art culturing and cryopreservation techniques, and the comparison among many today's bioreactor configurations. This review will also discuss in depth the importance of maintaining optimal mass transfer of nutrients and oxygen partial pressure in the bioreactor system. Finally, this review will discuss the commercially available bioreactors that are currently undergoing preclinical and clinical trials.
Collapse
|
14
|
|
15
|
Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL. E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant 2010; 18:1281-7. [PMID: 20003757 DOI: 10.3727/096368909x474258] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cultivation of primary hepatocytes as spheroids creates an efficient three-dimensional model system for hepatic studies in vitro and as a cell source for a spheroid reservoir bioartificial liver. The mechanism of spheroid formation is poorly understood, as is an explanation for why normal, anchorage-dependent hepatocytes remain viable and do not undergo detachment-induced apoptosis, known as anoikis, when placed in suspension spheroid culture. The purpose of this study was to investigate the role of E-cadherin, a calcium-dependent cell adhesion molecule, in the formation and maintenance of hepatocyte spheroids. Hepatocyte spheroids were formed by a novel rocker technique and cultured in suspension for up to 24 h. The dependence of spheroid formation on E-cadherin and calcium was established using an E-cadherin blocking antibody and a calcium chelator. We found that inhibiting E-cadherin prevented cell-cell attachment and spheroid formation, and, surprisingly, E-cadherin inhibition led to hepatocyte death through a caspase-independent mechanism. In conclusion, E-cadherin is required for hepatocyte spheroid formation and may be responsible for protecting hepatocytes from a novel form of caspase-independent cell death.
Collapse
|
16
|
The use of vitrification to preserve primary rat hepatocyte monolayer on collagen-coated poly(ethylene-terephthalate) surfaces for a hybrid liver support system. Biomaterials 2009; 30:4136-42. [DOI: 10.1016/j.biomaterials.2009.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
|
17
|
Kuleshova LL, Tan FCK, Magalhães R, Gouk SS, Lee KH, Dawe GS. Effective Cryopreservation of Neural Stem or Progenitor Cells without Serum or Proteins by Vitrification. Cell Transplant 2009; 18:135-144. [DOI: 10.3727/096368909788341298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Development of effective cryopreservation protocols will be essential to realizing the potential for clinical application of neural stem and progenitor cells. Current cryopreservation protocols have been largely employed in research, which does not require as stringent consideration of viability and sterility. Therefore, these protocols involve the use of serum and protein additives, which can potentially introduce contaminants, and slow cooling with DMSO/glycerol-based cryopreservation solutions, which impairs cell survival. We investigated whether serum- and protein-free vitrification is effective for functional cryopreservation of neurosphere cultures of neural stem or progenitor cells. To protect the samples from introduction of other contaminants during handling and cryostorage, an original “straw-in-straw” method (250 μl sterile straw placed in 500 μl straw) for direct immersion into liquid nitrogen and storing the samples was also introduced. The protocol employed brief step-wise exposure to vitrification solution composed of ethylene glycol (EG) and sucrose (40% v/v EG, 0.6 M sucrose) and removal of vitrification solution at room temperature. Evaluation of the effects of vitrification revealed that there were no differences between control and vitrified neural stem or progenitor cells in expression of the neural stem or progenitor cell markers, proliferation, or multipotent differentiation. This sterile method for the xeno-free cryopreservation of murine neurospheres without animal or human proteins may have the potential to serve as a starting point for the development of cryopreservation protocols for human neural stem and progenitor cells for clinical use.
Collapse
Affiliation(s)
- L. L. Kuleshova
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - F. C. K. Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology and Ageing Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - R. Magalhães
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. S. Gouk
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - K. H. Lee
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - G. S. Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology and Ageing Programme, Centre for Life Sciences, National University of Singapore, Singapore
| |
Collapse
|
18
|
Cryoreservation of alginate–fibrin beads involving bone marrow derived mesenchymal stromal cells by vitrification. Biomaterials 2009; 30:336-43. [DOI: 10.1016/j.biomaterials.2008.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/05/2008] [Indexed: 11/19/2022]
|