1
|
Sakata N, Yoshimatsu G, Kawakami R, Kodama S. Influence of relatively short-term culture on adult porcine islets for xenotransplantation. Sci Rep 2024; 14:11640. [PMID: 38773268 PMCID: PMC11109127 DOI: 10.1038/s41598-024-62570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/19/2024] [Indexed: 05/23/2024] Open
Abstract
Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
2
|
Sakata N, Yoshimatsu G, Kawakami R, Aoyagi C, Kodama S. Optimal temperature for the long-term culture of adult porcine islets for xenotransplantation. Front Immunol 2023; 14:1280668. [PMID: 37901206 PMCID: PMC10611499 DOI: 10.3389/fimmu.2023.1280668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Porcine islet xenotransplantation represents a promising therapy for severe diabetes mellitus. Long-term culture of porcine islets is a crucial challenge to permit the on-demand provision of islets. We aimed to identify the optimal temperature for the long-term culture of adult porcine islets for xenotransplantation. We evaluated the factors potentially influencing successful 28-day culture of islets at 24°C and 37°C, and found that culture at 37°C contributed to the stability of the morphology of the islets, the proliferation of islet cells, and the recovery of endocrine function, indicated by the expression of genes involved in pancreatic development, hormone production, and glucose-stimulated insulin secretion. These advantages may be provided by islet-derived CD146-positive stellate cells. The efficacy of xenotransplantation using islets cultured for a long time at 37°C was similar to that of overnight-cultured islets. In conclusion, 37°C might be a suitable temperature for the long-term culture of porcine islets, but further modifications will be required for successful xenotransplantation in a clinical setting.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Chikao Aoyagi
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
3
|
Maerckx C, Lombard CA, Tondreau T, Najimi M, Wallemacq P, Sokal EM. Cyclosporine A disposition, hepatic and renal tolerance in Wistar rat. Immunopharmacol Immunotoxicol 2016; 38:390-394. [PMID: 27600635 DOI: 10.1080/08923973.2016.1233979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cyclosporine A, a potent calcineurin inhibitor, has been widely used in organ transplantation and in the treatment of autoimmune diseases. It has, however, been shown to induce serious renal and hepatic side effects. The drug is also used in preclinical studies, but with little published information on the optimal dose and route of administration in rodents. Objectives of this study were to identify efficient and safe doses of cyclosporine A in rodent and to assess its effects on hepatic and renal functions. For this purpose, we tested the effects of different doses and administration routes of cyclosporine A (5, 2.5 and 1 mg/kg) administered during 28 days intraperitoneally, or by gastric feeding on Wistar rats. Our data indicate that rats injected intraperitoneally with 5 mg/kg/2d (every two days) exhibited trough cyclosporine A levels within known therapeutic range in human, but were subject to blood cyclosporine A accumulation, whereas the 5 mg/kg/d gavage resulted in only a small cyclosporine A accumulation over time. In both cases this accumulation was not deleterious to renal and hepatic functions, as shown by transaminase, urea, creatinine and bilirubin measurements.
Collapse
Affiliation(s)
- C Maerckx
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - C A Lombard
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - T Tondreau
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - M Najimi
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| | - P Wallemacq
- b Louvain Center for Toxicology and Applied Pharmacology , Université Catholique de Louvain , Brussels , Belgium
| | - E M Sokal
- a Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC) , Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
4
|
Gao Y, Guo Y, Duan A, Cheng D, Zhang S, Wang H. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA Cell Biol 2013; 33:1-11. [PMID: 24256201 DOI: 10.1089/dna.2013.2095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ground state porcine induced pluripotent stem cells (piPSCs), which retain the potential to generate chimeric animal and germline transmission, are difficult to produce. This study investigated morphological and biological progression at the early stage of porcine somatic cell reprogramming, and explored suitable conditions to increase the induction efficiency of piPSCs. A cocktail of defined transcription factors was used to generate piPSCs. The amphotropic retrovirus, which carried human OCT4 (O), SOX2 (S), KLF4 (K), C-MYC (M), TERT (T), and GFP, were used to infect porcine embryonic fibroblasts (PEFs). The number of clones derived from OSKM (4F) and OSKMT (4F+T) was significantly higher than that from SKM (3F) and SKMT (3F+T), suggesting that OCT4 played a critical role in regulating porcine cell reprogramming. The number of alkaline phosphatase-positive clones from a medium with leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) (M1 medium) was significantly higher than that with insulin and 2i PD0325901/CHIR99021 (M2 medium), indicating that insulin and 2i could not effectively maintain piPSC propagation. In the M1 medium, piPSC lines could not maintain the typical self-renewal morphology on gelatin-coated and Matrigel-coated plates. Without the mouse embryonic fibroblast (MEF) feeder, piPSCs started to simultaneously differentiate. Based on the potential for self-renewal and activation of pluripotent markers, we found that the culture condition of 4F+T plus LIF and bFGF plus MEF feeder promoted PEF reprogramming more efficiently than the other conditions tested here. Two piPSC lines (IB-1 and IB-2) were derived and maintained for up to 20 passages in vitro.
Collapse
Affiliation(s)
- Yi Gao
- Department of Animal Biotechnology, College of Veterinary Medicine , Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
5
|
Cheng D, Li Z, Liu Y, Gao Y, Wang H. Kinetic Analysis of Porcine Fibroblast Reprogramming Toward Pluripotency by Defined Factors. Cell Reprogram 2012; 14:312-23. [DOI: 10.1089/cell.2012.0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- De Cheng
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Liu
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Gao
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Montserrat N, De Oñate L, Garreta E, Gonzãlez F, Adamo A, Eguizãbal C, Häfner S, Vassena R, Belmonte JCI. Generation of Feeder-Free Pig Induced Pluripotent Stem Cells without Pou5f1. Cell Transplant 2012; 21:815-25. [DOI: 10.3727/096368911x601019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The pig represents an ideal large-animal model, intermediate between rodents and humans, for the preclinical assessment of emerging cell therapies. As no validated pig embryonic stem (pES) cell lines have been derived so far, pig induced pluripotent stem cells (piPSCs) should offer an alternative source of undifferentiated cells to advance regenerative medicine research from bench to clinical trial. We report here for the first time the derivation of piPSCs from adult fibroblast with only three transcription factors: Sox2 (sex determining region Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (avian myelocytomatosis viral oncogene homolog). We have been able to demonstrate that exogenous Pou5f1 (POU domain class 5 transcription factor 1; abbreviated as Octamer-4: Oct4) is dispensable to achieve and maintain pluripotency in the generation of piPSCs. To the best of our knowledge, this is also the first report of somatic reprogramming in any species without the overexpression, either directly or indirectly, of Oct4. Moreover, we were able to generate piPSCs without the use of feeder cells, approaching thus xeno-free conditions. Our work paves the way for the derivation of clinical grade piPSCs for regenerative medicine.
Collapse
Affiliation(s)
- Nuria Montserrat
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Lorena De Oñate
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Elena Garreta
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Federico Gonzãlez
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Antonio Adamo
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Cristina Eguizãbal
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Sophia Häfner
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Rita Vassena
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Juan Carlos Izpisua Belmonte
- Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
7
|
Souza YEDMD, Chaib E, Lacerda PGDD, Crescenzi A, Bernal-Filho A, D'Albuquerque LAC. Islet transplantation in rodents. Do encapsulated islets really work? ARQUIVOS DE GASTROENTEROLOGIA 2012; 48:146-52. [PMID: 21709957 DOI: 10.1590/s0004-28032011000200011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/19/2010] [Indexed: 11/22/2022]
Abstract
CONTEXT Diabetes mellitus type I affects around 240 million people in the world and only in the USA 7.8% of the population. It has been estimated that the costs of its complications account for 5% to 10% of the total healthcare spending around the world. According to World Health Organization, 300 million people are expected to develop diabetes mellitus by the year 2025. The pancreatic islet transplantation is expected to be less invasive than a pancreas transplant, which is currently the most commonly used approach. OBJECTIVES To compare the encapsulated and free islet transplantation in rodents looking at sites of islet implantation, number of injected islets, viability and immunosuppression. METHODS A literature search was conducted using MEDLINE/PUBMED and SCIELO with terms about islet transplantation in the rodent from 2000 to 2010. We found 2,636 articles but only 56 articles from 2000 to 2010 were selected. RESULTS In these 56 articles used, 34% were encapsulated and 66% were nonencapsulated islets. Analyzing both types of islets transplantation, the majority of the encapsulated islets were implanted into the peritoneal cavity and the nonencapsulated islets into the liver, through the portal vein. In addition, the great advantage of the peritoneal cavity as the site of islet transplantation is its blood supply. Both vascular endothelial cells and vascular endothelial growth factor were used to stimulate angiogenesis of the islet grafts, increasing the vascularization rapidly after implantation. It also has been proven that there is influence of the capsules, since the larger the capsule more chances there are of central necrosis. In some articles, the use of immunosuppression demonstrated to increase the life expectancy of the graft. CONCLUSION While significant progress has been made in the islets transplantation field, many obstacles remain to be overcome. Microencapsulation provides a means to transplant islets without immunosuppressive agents and may enable the performance of xenotransplantation. The use of alternative donor sources, fewer islets per capsule and the appropriate deployment location, such as the peritoneal cavity, may give a future perspective to the application of immunoprotective capsules and viability in clinical practice. A variety of strategies, such as genetic engineering, co-encapsulation, improvement in oxygen supply or the establishment of hypoxia resistance will also improve the islet transplantation performance. It remains to be determined which combination of strategies with encapsulation can fulfill the promise of establishing a simple and safe transplantation as a cure for diabetes.
Collapse
|
8
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update June-October 2010. Xenotransplantation 2011; 17:481-8. [PMID: 21158949 DOI: 10.1111/j.1399-3089.2010.00615.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|
9
|
Juszczak MT, Elsadig A, Kumar A, Muzyamba M, Pawelec K, Powis SH, Press M. Use of perfluorodecalin for pancreatic islet culture prior to transplantation: a liquid-liquid interface culture system--preliminary report. Cell Transplant 2010; 20:323-32. [PMID: 20719067 DOI: 10.3727/096368910x514189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the issue remains controversial, short-term culture is probably beneficial for islet graft quality. However, significant islet loss is invariably observed. This is related to reduced survival of large islets, which is compromised by hypoxia under standard culture conditions. We aimed to develop a method of culture, which would avoid exposure to relative hypoxia and hence maintain the quality of islets. Isolated rat islets cultured for 48 h in a liquid-liquid interface culture system (LICS) with a perfluorocarbon were compared to islets cultured under standard (C1) and suboptimal conditions (C2). Islets were tested for viability and response to a glucose challenge, and a marginal mass was transplanted into syngeneic diabetic recipients. The viability of islets after 24-h culture in LICS was higher than in C1 and C2 groups (89.0% vs. 77.5% and 64.6%, respectively) and decreased with time to reach 79.0%, 62.9%, and 53.4% after 72-h culture. The stimulation index in LICS-cultured islets was also significantly higher than in C1 and C2 groups (12.3 ± 0.4 vs. 5.8 ± 0.5 and 4.1 ± 0.2, respectively). Following transplantation of LICS-cultured islets 50% of recipients were rendered normoglycemic compared with 14.3% and 31.3% for C2 and fresh islets, respectively. Our liquid-liquid interface culture system using perfluorodecalin provides optimized culture conditions, which preserve both islet viability and their ability to engraft successfully after intraportal transplantation and could be used for islet transportation.
Collapse
Affiliation(s)
- M T Juszczak
- Department of Endocrinology and Diabetes, Royal Free Hospital, Hempsted, London, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Teng X, Yang X, Song Q, Lu R, Xiong J, Liu B, Zeng N, Zeng Y, Long J, Cao R, Lin Y, He Q, Chen P, Lu M, Liang S. Shotgun Proteomics and Network Analysis between Plasma Membrane and Extracellular Matrix Proteins from Rat Olfactory Ensheathing Cells. Cell Transplant 2010; 19:133-46. [PMID: 20350363 DOI: 10.3727/096368910x492607] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a special type of glial cells that have characteristics of both astrocytes and Schwann cells. Evidence suggests that the regenerative capacity of OECs is induced by soluble, secreted factors that influence their microenvironment. These factors may regulate OECs self-renewal and/or induce their capacity to augment spinal cord regeneration. Profiling of plasma membrane and extracellular matrix through a high-throughput expression proteomics approach was undertaken to identify plasma membrane and extracellular matrix proteins of OECs under serum-free conditions. 1D-shotgun proteomics followed with gene ontology (GO) analysis was used to screen proteins from primary culture rat OECs. Four hundred and seventy nonredundant plasma membrane proteins and 168 extracellular matrix proteins were identified, the majority of which were never before reported to be produced by OECs. Furthermore, plasma membrane and extracellular proteins were classified based on their protein–protein interaction predicted by STRING quantitatively integrates interaction data. The proteomic profiling of the OECs plasma membrane proteins and their connection with the secretome in serum-free culture conditions provides new insights into the nature of their in vivo microenvironmental niche. Proteomic analysis for the discovery of clinical biomarkers of OECs mechanism warrants further study.
Collapse
Affiliation(s)
- Yisong Liu
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Xiaohua Teng
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha, P.R. China
| | - Xiaoxu Yang
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Qing Song
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Rong Lu
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Jixian Xiong
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Bo Liu
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha, P.R. China
| | - Nianju Zeng
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha, P.R. China
| | - Yu Zeng
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha, P.R. China
| | - Jia Long
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Rui Cao
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Yong Lin
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Quanze He
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Ping Chen
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | - Ming Lu
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha, P.R. China
| | - Songping Liang
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| |
Collapse
|