1
|
Naumova AA, Oleynik EA, Grigorieva YS, Nikolaeva SD, Chernigovskaya EV, Glazova MV. In search of stress: analysis of stress-related markers in mice after hindlimb unloading and social isolation. Neurol Res 2023; 45:957-968. [PMID: 37642364 DOI: 10.1080/01616412.2023.2252280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES Hindlimb unloading (HU), widely used to simulate microgravity effects, is known to induce a stress response. However, as single-housed animals are usually used in such experiments, social isolation (SI) stress can affect experimental results. In the present study, we aimed to delineate stressful effects of 3-day HU and SI in mice. METHODS Three animal groups, HU, SI, and group-housed (GH) control mice, were recruited. A comprehensive analysis of stress-related markers was performed using ELISA, western blotting, and immunohistochemistry. RESULTS Our results showed that blood corticosterone and activity of glucocorticoid receptors and cAMP response element-binding protein (CREB) in the hippocampus of SI and HU animals did not differ from GH control. However, SI mice demonstrated upregulation of the hippocampal corticotropin-releasing hormone (CRH), inducible NO synthase (iNOS), vesicular glutamate transporter 1 (VGLUT1), and glutamate decarboxylases 65/67 (GAD65/67) along with activation of Fos-related antigen 1 (Fra-1) in the amygdala confirming the expression of stress. In HU mice, the same increase in GAD65/67 and Fra-1 indicated the contribution of SI. The special HU effect was expressed only in neurogenesis attenuation. DISCUSSION Thus, our data indicated that 3-day HU could not be characterized as physiological stress, but SI stress contributed to the negative effects of HU.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Yulia S Grigorieva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H, Borlongan CV. Sequestration of Inflammation in Parkinson's Disease via Stem Cell Therapy. Int J Mol Sci 2022; 23:ijms231710138. [PMID: 36077534 PMCID: PMC9456021 DOI: 10.3390/ijms231710138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Adam Alayli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hassan Choudhary
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
3
|
Oleynik EA, Naumova АА, Grigorieva YS, Bakhteeva VT, Lavrova EA, Chernigovskaya EV, Glazova MV. Neurogenesis in the Hippocampus of Mice Exposed to Short-Term Hindlimb Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Plantar Stimulations during 3-Day Hindlimb Unloading Prevent Loss of Neural Progenitors and Maintain ERK1/2 Activity in the Rat Hippocampus. Life (Basel) 2021; 11:life11050449. [PMID: 34067876 PMCID: PMC8157184 DOI: 10.3390/life11050449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Adult neurogenesis is a flexible process that depends on the environment and correlates with cognitive functions. Cognitive functions are impaired by various factors including space flight conditions and reduced physical activity. Physically active life significantly improves both cognition and the hippocampal neurogenesis. Here, we analyzed how 3-day simulated microgravity caused by hindlimb unloading (HU) or dynamic foot stimulation (DFS) during HU can affect the hippocampal neurogenesis. Adult Wistar rats were recruited in the experiments. The results demonstrated a decrease in the number of doublecortine (DCX) positive neural progenitors, but proliferation in the subgranular zone of the dentate gyrus was not changed after 3-day HU. Analysis of the effects of DFS showed restoration of neural progenitor population in the subgranular zone of the dentate gyrus. Additionally, we analyzed activity of the cRaf/ERK1/2 pathway, which is one of the major players in the regulation of neuronal differentiation. The results demonstrated inhibition of cRaf/ERK1/2 signaling in the hippocampus of HU rats. In DFS rats, no changes in the activity of cRaf/ERK1/2 were observed. Thus, we demonstrated that the process of neurogenesis fading during HU begins with inhibition of the formation of immature neurons and associated ERK1/2 signaling activity, while DFS prevents the development of mentioned alterations.
Collapse
|
5
|
Exercise Trials in Pediatric Brain Tumor: A Systematic Review of Randomized Studies. J Pediatr Hematol Oncol 2021; 43:59-67. [PMID: 32604333 DOI: 10.1097/mph.0000000000001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
In pediatric brain tumor patients, treatment advances have increased survival rates to nearly 70%, while consequently shifting the burden of disease to long-term management. Exercise has demonstrated potential in improving multiple health impairments secondary to brain tumor treatment. However, these effects have not been consolidated through review. Therefore, we performed a systematic review of 6 health sciences databases (Medline, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Central Database). Two reviewers screened studies against predefined inclusion criteria, namely that the study must: (i) be pediatric-specific; (ii) examine the effects of an exercise intervention; and (iii) employ a randomized or quasi-randomized trial design. The same 2 reviewers performed data extraction and analyses. From a pool of 4442, 5 articles-based on 2 independent trials-were included in our review (N=41). Exercise interventions were primarily aerobic, but included balance or muscle building components. Exercise had a positive effect on volumetric or diffusion-based neuroimaging outcomes, as well as motor performance and cardiorespiratory fitness. The effects of exercise on cognition remains unclear. Exercise did not worsen any of the outcomes studied. This review captures the state of the science, suggesting a potential role for exercise in children treated for brain tumor.
Collapse
|
6
|
Van Weehaeghe D, Devrome M, Schramm G, De Vocht J, Deckers W, Baete K, Van Damme P, Koole M, Van Laere K. Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. Eur J Nucl Med Mol Imaging 2020; 47:2681-2690. [PMID: 32314027 DOI: 10.1007/s00259-020-04786-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with on average a 1-year delay between symptom onset and diagnosis. Studies have demonstrated the value of [18F]-FDG PET as a sensitive diagnostic biomarker, but the discriminatory potential to differentiate ALS from patients with symptoms mimicking ALS has not been investigated. We investigated the combination of brain and spine [18F]-FDG PET-CT for differential diagnosis between ALS and ALS mimics in a real-life clinical diagnostic setting. METHODS Patients with a suspected diagnosis of ALS (n = 98; 64.8 ± 11 years; 61 M) underwent brain and spine [18F]-FDG PET-CT scans. In 62 patients, ALS diagnosis was confirmed (67.8 ± 10 years; 35 M) after longitudinal follow-up (average 18.1 ± 8.4 months). In 23 patients, another disease was diagnosed (ALS mimics, 60.9 ± 12.9 years; 17 M) and 13 had a variant motor neuron disease, primary lateral sclerosis (PLS; n = 4; 53.6 ± 2.5 years; 2 M) and progressive muscular atrophy (PMA; n = 9; 58.4 ± 7.3 years; 7 M). Spine metabolism was determined after manual and automated segmentation. VOI- and voxel-based comparisons were performed. Moreover, a support vector machine (SVM) approach was applied to investigate the discriminative power of regional brain metabolism, spine metabolism and the combination of both. RESULTS Brain metabolism was very similar between ALS mimics and ALS, whereas cervical and thoracic spine metabolism was significantly different (in standardised uptake values; cervical: ALS 2.1 ± 0.5, ALS mimics 1.9 ± 0.4; thoracic: ALS 1.8 ± 0.3, ALS mimics 1.5 ± 0.3). As both brain and spine metabolisms were very similar between ALS mimics and PLS/PMA, groups were pooled for accuracy analyses. Mean discrimination accuracy was 65.4%, 80.0% and 81.5%, using only brain metabolism, using spine metabolism and using both, respectively. CONCLUSION The combination of brain and spine FDG PET-CT with SVM classification is useful as discriminative biomarker between ALS and ALS mimics in a real-life clinical setting.
Collapse
Affiliation(s)
- Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Joke De Vocht
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Wies Deckers
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kristof Baete
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Zhang H, Lee JY, Borlongan CV, Tajiri N. A brief physical activity protects against ischemic stroke. Brain Circ 2019; 5:112-118. [PMID: 31620657 PMCID: PMC6785942 DOI: 10.4103/bc.bc_32_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
With restricted therapeutic opportunities, stroke remains a relevant, critical disease necessitating study. Due to the unique aspect of ischemic strokes, finding approaches to maintain the vigor of the cerebral vasculature, such as increased angiogenesis, may protect against stroke. Ischemic strokes are caused by disruptions in blood movement in the brain, resulting in a torrent of harmful cerebrovasculature modifications. In an investigation by Pianta et al., Sprague-Dawley rats have been separated into those that undergo exercise prior to middle cerebral artery occlusion (MCAO) and those that were not exposed to physical activity preceding MCAO. The outcomes and results of the current study gave new insights into the capacity of exercise to help prevent ischemic strokes or mitigate poststroke effects. The data collected from the study suggested that rats that went through a short bout of exercise before MCAO presented superior motor performance, more active cells in the peri-infarct region, and reduced infarct sizes. When compared to the control group, the rats that went through exercise also had heightened angiogenesis and improved neuroprotection. Thus, a brief bout of physical activity preceding a stroke may provide neuroprotection by enhancing the strength of the cerebrovasculature in the brain. This notion that even an instant of physical exercise before a stroke is induced can help dampen the effects of ischemic stroke, which could lead to future techniques in preventing the ischemic stroke so that it never happens at all.
Collapse
Affiliation(s)
- Henry Zhang
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Lai JH, Chen KY, Wu JCC, Olson L, Brené S, Huang CZ, Chen YH, Kang SJ, Ma KH, Hoffer BJ, Hsieh TH, Chiang YH. Voluntary exercise delays progressive deterioration of markers of metabolism and behavior in a mouse model of Parkinson's disease. Brain Res 2019; 1720:146301. [PMID: 31226324 DOI: 10.1016/j.brainres.2019.146301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Although a good deal is known about the genetics and pathophysiology of Parkinson's disease (PD), and information is emerging about its cause, there are no pharmacological treatments shown to have a significant, sustained capacity to prevent or attenuate the ongoing neurodegenerative processes. However, there is accumulating clinical results to suggest that physical exercise is such a treatment, and studies of animal models of the dopamine (DA) deficiency associated with the motor symptoms of PD further support this hypothesis. Exercise is a non-pharmacological, economically practical, and sustainable intervention with little or no risk and with significant additional health benefits. In this study, we investigated the long-term effects of voluntary exercise on motor behavior and brain biochemistry in the transgenic MitoPark mouse PD model with progressive degeneration of the DA systems caused by DAT-driven deletion of the mitochondrial transcription factor TFAM in DA neurons. We found that voluntary exercise markedly improved behavioral function, including overall motor activity, narrow beam walking, and rotarod performance. There was also improvement of biochemical markers of nigrostriatal DA input. This was manifested by increased levels of DA measured by HPLC, and of the DA membrane transporter measured by PET. Moreover, exercise increased oxygen consumption and, by inference, ATP production via oxidative phosphorylation. Thus, exercise augmented aerobic mitochondrial oxidative metabolism vs glycolysis in the nigrostriatal system. We conclude that there are clear-cut physiological mechanisms for beneficial effects of exercise in PD.
Collapse
Affiliation(s)
- Jing-Huei Lai
- Core Laboratory of Neuroscience, Office of R&D, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yun Chen
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - John Chung-Che Wu
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Stefan Brené
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chi-Zong Huang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Chen
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuo-Jhen Kang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Tsung-Hsun Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Hsiao Chiang
- Core Laboratory of Neuroscience, Office of R&D, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Karlsson L, González-Alvarado MN, Larrosa-Flor M, Osman A, Börjesson M, Blomgren K, Kuhn HG. Constitutive PGC-1α Overexpression in Skeletal Muscle Does Not Improve Morphological Outcome in Mouse Models of Brain Irradiation or Cortical Stroke. Neuroscience 2018; 384:314-328. [PMID: 29859976 DOI: 10.1016/j.neuroscience.2018.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
Physical exercise can improve morphological outcomes after ischemic stroke and ameliorate irradiation-induced reduction of hippocampal neurogenesis in rodents, but the mechanisms underlying these effects remain largely unknown. The transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is considered to be one of the central factors responsible for exercise-induced benefits in skeletal muscle, including the release of neurotrophic factors into the circulation. In order to test if PGC-1α overexpression in skeletal muscle could simulate the exercise-induced effects on recovery after cranial irradiation and stroke, we used male adult transgenic mice overexpressing murine PGC-1α under the control of muscle creatinine kinase promoter and subjected them to either whole brain irradiation at a dose of 4 Gy or photothrombotic stroke to the sensory motor cortex. Muscular PGC-1α overexpression did not ameliorate irradiation-induced reduction of newborn BrdU-labeled cells in the dentate gyrus, immature neurons, or newborn mature neurons. In the stroke model, muscular overexpression of PGC-1α resulted in an increased infarct size without any changes in microglia activation or reactive astrocytosis. No difference could be detected in the number of migrating neural progenitor cells from the subventricular zone to the lesioned neocortex or in vascular density of the contralateral neocortex in comparison to wildtype animals. We conclude that forced muscular overexpression of PGC-1α does not have a beneficial effect on hippocampal neurogenesis after irradiation, but rather a detrimental effect on the infarct volume after stroke in mice. This suggests that artificial muscle activation through the PGC-1α pathway is not sufficient to mimic exercise-induced recovery after cranial irradiation and stroke.
Collapse
Affiliation(s)
- Lars Karlsson
- Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30 Gothenburg, Sweden; The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, 416 85 Gothenburg, Sweden.
| | | | - Mar Larrosa-Flor
- Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30 Gothenburg, Sweden
| | - Ahmed Osman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mats Börjesson
- Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30 Gothenburg, Sweden; Center for Health and Performance, Department of Food and Nutrition, University of Gothenburg, Box 300, 405 30 Gothenburg, Sweden; Sahlgrenska University Hospital/Östra, 416 50 Gothenburg, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Georg Kuhn
- Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30 Gothenburg, Sweden
| |
Collapse
|
10
|
Kim RE, Yun CH, Thomas RJ, Oh JH, Johnson HJ, Kim S, Lee S, Seo HS, Shin C. Lifestyle-dependent brain change: a longitudinal cohort MRI study. Neurobiol Aging 2018; 69:48-57. [PMID: 29852410 DOI: 10.1016/j.neurobiolaging.2018.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Abstract
We investigated both independent and interconnected effects of 3 lifestyle factors on brain volume, measuring yearly changes using large-scale longitudinal magnetic resonance imaging, in middle-aged to older adults. We measured brain volumes in a cohort (n = 984, 49-79 years) from the Korean Genome and Epidemiology Study group, using baseline and follow-up estimates after 4 years. In our analysis, the accelerated brain atrophy in normal aging was observed across regions (e.g., brain tissue: -0.098 ± 0.01 mL/y, p < 0.001). An independent lifestyle-specific trend of brain atrophy across time was also evident in men, where smoking (p = 0.012) and physical activity (p = 0.014) showed the strongest association with the atrophy rate. Linear regression analysis of the interconnected effect revealed that brain atrophy is mitigated by intense physical activity in smoking males. Lifestyle factors did not show any significant effect on brain volume in women. These results provide important information regarding lifestyle factors that affect brain aging in mid-to-late adulthood. Our findings may aid in the identification of preventive measures against dementia.
Collapse
Affiliation(s)
- Regina Ey Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, Republic of Korea; Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Robert J Thomas
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Jang-Hoon Oh
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hans J Johnson
- Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Soriul Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seungku Lee
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyung Suk Seo
- Department of Radiology, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Chol Shin
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, Republic of Korea; Division of Pulmonary Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
11
|
Chao FL, Zhang L, Zhang Y, Zhou CN, Jiang L, Xiao Q, Luo YM, Lv FL, He Q, Tang Y. Running exercise protects against myelin breakdown in the absence of neurogenesis in the hippocampus of AD mice. Brain Res 2018; 1684:50-59. [PMID: 29317290 DOI: 10.1016/j.brainres.2018.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Neurogenesis might influence oligodendrogenesis and selectively instruct myelination in the mammalian brain. Running exercise could induce neurogenesis and protect the myelin sheaths in the dentate gyrus of AD mice. It is unclear whether running exercise can protect myelin sheaths in the absence of neurogenesis in the hippocampus of AD mice. Six-month-old male APP/PS1 transgenic mice were randomly assigned to a control group (Tg control) or a running group (Tg runner), and age-matched non-transgenic littermates were used as a wild-type group (WT control). The Tg runner mice were subjected to a running protocol for four months. The behaviors of the mice in the three groups were then assessed using the Morris water maze, and related quantitative parameters of the myelin sheaths within the CA1 field were investigated using unbiased stereological and electron microscopy techniques. Learning and spatial memory performance, CA1 volume, the volumes of the myelinated fibers, and myelin sheaths in the CA1 field were all significantly worse in the Tg control mice than in the WT control mice. Learning and spatial memory performance, CA1 volume and the volume of the myelin sheaths in the CA1 field were all significantly greater in the Tg runner mice than in the Tg control mice. These results reveal demyelinating lesions in the CA1 field of Alzheimer's disease (AD) mice and indicate that running exercise could protect against myelin sheath degeneration in the absence of neurogenesis, thereby reducing CA1 atrophy and delaying the onset and progression of AD.
Collapse
Affiliation(s)
- Feng-Lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Fu-Lin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Is hippocampal neurogenesis modulated by the sensation of self-motion encoded by the vestibular system? Neurosci Biobehav Rev 2017; 83:489-495. [DOI: 10.1016/j.neubiorev.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 01/26/2023]
|
13
|
Tajiri N, Quach DM, Kaneko Y, Wu S, Lee D, Lam T, Hayama KL, Hazel TG, Johe K, Wu MC, Borlongan CV. NSI-189, a small molecule with neurogenic properties, exerts behavioral, and neurostructural benefits in stroke rats. J Cell Physiol 2017; 232:2731-2740. [PMID: 28181668 PMCID: PMC5518191 DOI: 10.1002/jcp.25847] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Enhancing neurogenesis may be a powerful stroke therapy. Here, we tested in a rat model of ischemic stroke the beneficial effects of NSI-189, an orally active, new molecular entity (mol. wt. 366) with enhanced neurogenic activity, and indicated as an anti-depressant drug in a clinical trial (Fava et al., , Molecular Psychiatry, DOI: 10.1038/mp.2015.178) and being tested in a Phase 2 efficacy trial (ClinicalTrials.gov, , ClinicalTrials.gov Identifier: NCT02695472) for treatment of major depression. Oral administration of NSI-189 in adult Sprague-Dawley rats starting at 6 hr after middle cerebral artery occlusion, and daily thereafter over the next 12 weeks resulted in significant amelioration of stroke-induced motor and neurological deficits, which was maintained up to 24 weeks post-stroke. Histopathological assessment of stroke brains from NSI-189-treated animals revealed significant increments in neurite outgrowth as evidenced by MAP2 immunoreactivity that was prominently detected in the hippocampus and partially in the cortex. These results suggest NSI-189 actively stimulated remodeling of the stroke brain. Parallel in vitro studies further probed this remodeling process and demonstrated that oxygen glucose deprivation and reperfusion (OGD/R) initiated typical cell death processes, which were reversed by NSI-189 treatment characterized by significant attenuation of OGD/R-mediated hippocampal cell death and increased Ki67 and MAP2 expression, coupled with upregulation of neurogenic factors such as BDNF and SCF. These findings support the use of oral NSI-189 as a therapeutic agent well beyond the initial 6-hr time window to accelerate and enhance the overall functional improvement in the initial 6 months post stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University South Florida College of Medicine, Tampa, Florida
| | | | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University South Florida College of Medicine, Tampa, Florida
| | | | - David Lee
- Neuralstem, Inc., Rockville, Maryland
| | - Tina Lam
- Neuralstem, Inc., Rockville, Maryland
| | | | | | - Karl Johe
- Neuralstem, Inc., Rockville, Maryland
| | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
14
|
Nonpharmacological Interventions in Targeting Pain-Related Brain Plasticity. Neural Plast 2017; 2017:2038573. [PMID: 28299206 PMCID: PMC5337367 DOI: 10.1155/2017/2038573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/29/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic pain is a highly prevalent and debilitating condition that is frequently associated with multiple comorbid psychiatric conditions and functional, biochemical, and anatomical alterations in various brain centers. Due to its widespread and diverse manifestations, chronic pain is often resistant to classical pharmacological treatment paradigms, prompting the search for alternative treatment approaches that are safe and efficacious. The current review will focus on the following themes: attentional and cognitive interventions, the role of global environmental factors, and the effects of exercise and physical rehabilitation in both chronic pain patients and preclinical pain models. The manuscript will discuss not only the analgesic efficacy of these therapies, but also their ability to reverse pain-related brain neuroplasticity. Finally, we will discuss the potential mechanisms of action for each of the interventions.
Collapse
|
15
|
Corey S, Lippert T, Borlongan CV. Translational lab-to-clinic hurdles in stem cell therapy. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0058-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Bang OY, Kim EH, Cha JM, Moon GJ. Adult Stem Cell Therapy for Stroke: Challenges and Progress. J Stroke 2016; 18:256-266. [PMID: 27733032 PMCID: PMC5066440 DOI: 10.5853/jos.2016.01263] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Eun Hee Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Jae Min Cha
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Seoul, Korea.,Medical Device Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea.,Stem cell and Regenerative Medicine Institute, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
17
|
Borlongan CV, Jolkkonen J, Detante O. The future of stem cell therapy for stroke rehabilitation. FUTURE NEUROLOGY 2015; 10:313-319. [PMID: 26997918 DOI: 10.2217/fnl.15.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Jukka Jolkkonen
- University of Eastern Finland, Institute of Clinical Medicine - Neurology, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Olivier Detante
- University Hospital of Grenoble, Stroke Unit, Department of Neurology, CS 10217, 38043 Grenoble, France; Inserm, U 836, BP 170, 38042 Grenoble, France; University Grenoble Alpes, Grenoble Institute of Neurosciences, BP 170, 38042 Grenoble, France
| |
Collapse
|